Answer:
The inside Pressure of the tank is 
Solution:
As per the question:
Volume of tank, 
The capacity of tank, 
Temperature, T' =
= 299.8 K
Temperature, T =
= 288.2 K
Now, from the eqn:
PV = nRT (1)
Volume of the gas in the container is constant.
V = V'
Similarly,
P'V' = n'RT' (2)
Also,
The amount of gas is double of the first case in the cylinder then:
n' = 2n
![\]frac{n'}{n} = 2](https://tex.z-dn.net/?f=%5C%5Dfrac%7Bn%27%7D%7Bn%7D%20%3D%202)
where
n and n' are the no. of moles
Now, from eqn (1) and (2):


A) The answer is 11.53 m/s
The final kinetic energy (KEf) is the sum of initial kinetic energy (KEi) and initial potential energy (PEi).
KEf = KEi + PEi
Kinetic energy depends on mass (m) and velocity (v)
KEf = 1/2 m * vf²
KEi = 1/2 m * vi²
Potential energy depends on mass (m), acceleration (a), and height (h):
PEi = m * a * h
So:
KEf = KEi + <span>PEi
</span>1/2 m * vf² = 1/2 m * vi² + m * a * h
..
Divide all sides by m:
1/2 vf² = 1/2 vi² + a * h
We know:
vi = 9.87 m/s
a = 9.8 m/s²
h = 1.81 m
1/2 vf² = 1/2 * 9.87² + 9.8 * 1.81
1/2 vf² = 48.71 + 17.74
1/2 vf² = 66.45
vf² = 66.45 * 2
vf² = 132.9
vf = √132.9
vf = 11.53 m/s
b) The answer is 6.78 m
The kinetic energy at the bottom (KE) is equal to the potential energy at the highest point (PE)
KE = PE
Kinetic energy depends on mass (m) and velocity (v)
KE = 1/2 m * v²
Potential energy depends on mass (m), acceleration (a), and height (h):
PE = m * a * h
KE = PE
1/2 m * v² = m * a * h
Divide both sides by m:
1/2 * v² = a * h
v = 11.53 m/s
a = 9.8 m/s²
h = ?
1/2 * 11.53² = 9.8 * h
1/2 * 132.94 = 9.8 * h
66.47 = 9.8 * h
h = 66.47 / 9.8
h = 6.78 m
Answer:
yes
Explanation:
this is simple
the horizontal line is adjacent
the vertical line is opposite
recall that cos x=adj/hyp
adj=hyp(cos x)
while opp=hyp(sin x)
The speed of the spaceship relative to the galaxy is 0.99999995c.
A light-year measures distance rather than time (as the name might imply). A light-year is a distance a light beam travels in one year on Earth, which is roughly 6 trillion miles (9.7 trillion kilometers). One light-year equals 5,878,625,370,000 miles. Light moves at a speed of 670,616,629 mph (1,079,252,849 km/h) in a vacuum.We multiply this speed by the number of hours in a year to calculate the distance of a light-year (8,766).
The Milky way galaxy is 100,000 light years in diameter.
The galaxy's diameter is a mere 1. 0 ly.
We know that ;

L = 1 light year
L₀ = 100,000 light year




Therefore, the speed of the spaceship relative to the galaxy is 0.99999995c.
Learn more about a light year here:
brainly.com/question/17423632
#SPJ4