Answer: I think it’s 20cm.
Answer:
A. speed = 7.14 Km/s
B. distance = 1820.7 Km
Explanation:
Given that: a = 14.0 m/
, t = 8.50 minutes.
But,
t = 8.50 = 8.50 x 60
= 510 seconds
A. By applying the first equation of motion, the speed of the shuttle at the end of 8.50 minutes can be determined by;
v = u + at
where: v is the final velocity, u is the initial velocity, a is the acceleration and t is the time.
u = 0
So that,
v = 14 x 510
= 7140 m/s
The speed of the shuttle at the end of 8.50 minute is 7.14 Km/s.
B. the distance traveled can be determined by applying second equation of motion.
s = ut +
a
where: s is the distance, u is the initial velocity, a is the acceleration and t is the time.
u = 0
s =
a
=
x 14 x 
= 7 x 260100
= 1820700 m
The distance that the shuttle has traveled during the given time is 1820.7 Km.
-GMm/2r is the total energy of the mass m if it is in a circular orbit about mass M.
Given
A particle of mass m moving under the influence of a fixed mass's M, gravitational potential energy of formula -GMm/r, where r is the separation between the masses and G is the gravitational constant of the universe.
As the Gravity Potential energy of particle = -GMm/r
Total energy of particle = Kinetic energy + Potential Energy
As we know that
Kinetic energy = 1/2mv²
Also, v is equals to square root of GM/r
v = √GM/r
Put the value of v in the formula of kinetic energy
We get,
Kinetic Energy = GMm/2r
Total Energy = GMm/2r + (-GMm/r)
= GMm/2r - GMm/r
= -GMm/2r
Hence, -GMm/2r is the total energy of the mass m if it is in a circular orbit about mass M.
Learn more about Gravitational Potential Energy here brainly.com/question/15896499
#SPJ4