Answer:
Not balance.
Explanation:
Chemical equation:
K + Cl₂ → KCl
The given equation is not balance because there are one potassium and two chlorine atoms on left side of equation while on right side there are one potassium and one chlorine atom present.
Balance chemical equation:
2K + Cl₂ → 2KCl
the equation is balance now because there are two potassium and two chlorine atoms on left side of equation and two potassium and two chlorine atoms are also present on right side.
The most common method astronomers use to determine the composition of stars, planets, and other objects is spectroscopy. This process utilizes instruments with a grating that spreads out the light from an object by wavelength. This spread-out light is called a spectrum. Every element has a unique fingerprint that allows researchers to determine what it is made of.
The fingerprint often appears as the absorption of light. Every atom has electrons, and these electrons like to stay in their lowest-energy levels. But when photons carrying energy hit an electron, they can push it to higher energy levels. This is absorption, and each element’s electrons absorb light at specific wavelengths related to the difference between energy levels in that atom. But the electrons want to return to their original levels, so they don’t hold onto the energy for long. When they emit the energy, they release photons with exactly the same wavelengths of light that were absorbed in the first place. An electron can release this light in any direction, so most of the light is emitted in directions away from our line of sight. Therefore, a dark line appears in the spectrum at that particular wavelength.
Because the wavelengths at which absorption lines occur are unique for each element, astronomers can measure the position of the lines to determine which elements are present in a target. The amount of light that is absorbed can also provide information about how much of each element is present.
0,35 kmol/m³ = 0,35 mol/dm³ = 0,35 mol/L
175 mL = 0,175 L
*-*-*-*-*-*-*-*-*-*-*-*
C = n/V
n = 0,35×0,175
n = 0,06125 mol
mCa(NO₃)₂: 40+(14×2)+(16×6) = 164 g/mol
1 mol --------- 164g
0,06125 ---- X
X = 10,045g
To prepare 175 mL of 0,35M solution, add 10,045g of calcium nitrate and add water to a volume of 175ml.
<span>KCl<span>O3</span><span>(s)</span>+Δ→KCl<span>(s)</span>+<span>32</span><span>O2</span><span>(g)</span></span>
Approx. <span>3L</span> of dioxygen gas will be evolved.
Explanation:
We assume that the reaction as written proceeds quantitatively.
Moles of <span>KCl<span>O3</span><span>(s)</span></span> = <span><span>10.0⋅g</span><span>122.55⋅g⋅mo<span>l<span>−1</span></span></span></span> = <span>0.0816⋅mol</span>
And thus <span><span>32</span>×0.0816⋅mol</span> dioxygen are produced, i.e. <span>0.122⋅mol</span>.
At STP, an Ideal Gas occupies a volume of <span>22.4⋅L⋅mo<span>l<span>−1</span></span></span>.
And thus, volume of gas produced = <span>22.4⋅L⋅mo<span>l<span>−1</span></span>×0.0816⋅mol≅3L</span>
Note that this reaction would not work well without catalysis, typically <span>Mn<span>O2</span></span>.