When preparing diluted solutions from concentrated solutions , we can use the following equation;
c1v1 =c2v2
Where c1 and v1 are the concentration and volume of the concentrated solution
c2 is the concentration of the diluted solution to be prepared
v2 is the volume of the diluted solution
Substituting the values;
12.0 M x v1 = 0.339 M x 100 mL
v1 = 2.825 mL needs to be taken from the stock solution
Answer:
<h2><em><u>B.) lone pairs of electrons</u></em></h2>
Explanation:
The table below indicates the “Molecular Geometry” of the central atom depending on whether the groups of electrons around it are covalent bonds to other atoms or simply lone pairs of electrons.
Answer:
As water freezes, a crystalline structure preserved by hydrogen bonding is formed by water molecules. Less dense than liquid water is solid water, or ice. Ice is less dense than water since molecules are pulled farther apart by the direction of hydrogen bonds, which decreases density.
Explanation:
<span>B. muscular endurance
</span>The capacity of a muscle to continue contracting over a period of time without fatigue is called muscular endurance.
NOT:
A. muscular strength.
<span>C. cardiovascular endurance. </span>
<span>D. power.</span>
Answer:
10.87 g of Ethyl Butyrate
Solution:
The Balance Chemical Equation is as follow,
H₃C-CH₂-CH₂-COOH + H₃C-CH₂-OH → H₃C-CH₂-CH₂-COO-CH₂-CH₃ + H₂O
According to equation,
88.11 g (1 mol) Butanoic Acid produces = 116.16 g (1 mol) Ethyl Butyrate
So,
8.25 g Butanoic Acid will produce = X g of Ethyl Butyrate
Solving for X,
X = (8.25 g × 116.16 g) ÷ 88.11 g
X = 10.87 g of Ethyl Butyrate