G(2)=2
For this, you can plug in 2 everywhere you see an n. So the equation will read:
g(2)=g(2-1)+2 -> g(2)=g(1)+2. Since we are given g(1)=0, we can plug in 0 where we see g(1). The equation is now. g(2)=0+2. So, g(2)=2.
Answer: The number of grams of
in 1620 mL is 1.44 g
Explanation:
According to ideal gas equation:

P = pressure of gas = 1 atm (at STP)
V = Volume of gas = 1620 ml = 1.62 L (1L=1000ml)
n = number of moles = ?
R = gas constant =
T =temperature =


Mass of hydrogen =
The number of grams of
in 1620 mL is 1.44 g
Answer:
Explanation:
<u>1. Molecular chemical equation:</u>
- 2 KClO₃(s) → 2 KCl(s) + 3 O₂(g)
<u>2. Mole ratios:</u>
- 2 mol KClO₃ : 2 mol KCl : 3 mol O₂
<u>3. Number of moles of KClO₃</u>
- Number of moles = mass in grams / molar mass
- Molar mass of KClO₃ = 122.55 g/mol
- Number of moles of KClO₃ = 54.3 g / 122.5 g/mol ≈ 0.44308 mol
<u>3. Number of moles of O₂</u>
As per the theoretical mole ratio 2 mol of KClO₃ produce 3 mol of O₂, then set up a proportion to determine how many moles of O₂ will be produced from 0.44038 mol of KClO₃.
- 3 mol O₂ / 2 mol KClO₃ = x / 0.44038 mol KClO₃
- x = (3 / 2) × 0.44308 mol O₂ = 0.6646 mol O₂
Round to 3 significant figures: 0.665 mol of O₂ ← answer
If 40.0 grams of magnesium is reacted with an excess of nitric acid. 3.3 g of hydrogen gas will be produced.
<h3>What is Stoichiometry ?</h3>
Stoichiometry helps us use the balanced chemical equation to measure quantitative relationships and it is to calculate the amounts of products and reactants that are given in a reaction.
<h3>What is Balanced Chemical Equation ?</h3>
The balanced chemical equation is the equation in which the number of atoms on the reactant side is equal to the number of atoms on the product side in an equation.
Now we have to write the balanced equation
Mg + 2HNO₃ → Mg(NO₃)₂ + H₂
According to Stoichiometry

= 3.3 g H₂
Thus from the above conclusion we can say that If 40.0 grams of magnesium is reacted with an excess of nitric acid. 3.3 g of hydrogen gas will be produced.
Learn more about the Stoichiometry here: brainly.com/question/16060223
#SPJ1
It will dissolve fastest in a cup of hot water.