Answer:
It can create a new plant variety, cure diseases or like the current epidemic situation, vaccines, drugs, ...
Explanation:
Answer: (Assuming we’re going by degrees Fahrenheit) I’d say 140.
Explanation: -40 would be beyond freezing point for water which is 32 degrees Fahrenheit and 40 would nearly be freezing point. For water to transform into its gas phase, the temperature would need to be greater. Therefore, 140 degrees Fahrenheit makes the most sense.
Although I did search it up and 212 degrees Fahrenheit (100 degrees Celsius) is the proven temperature at which water transforms into water vapor so... not sure if there’s more to the question or I’m interpreting the question wrong.
This interaction must be one of the intermolecular forces, particularly, Van der Waals forces. From the description given, this force is called <em>induced dipole-induced dipole forces</em>. Dipole is defined as the separation of positive and negative charges. This type of intermolecular force is very weak compared to hydrogen bonding.
Answer:
1-(tert-butoxy)-2-methylpropane
Note: there is a mistake in formula, the correct formula is (CH₃)₂-CH-CH₂-O-C(CH₃)₃ not (CH₃)₂-CH-CH₂-O(CH₃)₃, because oxygen is a divalent compound.
Explanation:
<em>Structural formula is attached</em>
IUPAC naming rules
1. start numbering the chain from the functional group. In this compound we start from oxygen side.
2. Here we can see that at position 1 there is an oxy group along with a tertiary carbon having three methyl groups. So we write it as 1-tert-butoxy. Which means that there is a methoxy group at position 1 along with a tertiary carbon.
3. At position 2 we can see that there is a methyl group attached to the main chain, so we write it as 2-methyl.
4. Now we count the total number of carbons in the main chain. As we can see that there are 3 carbons in the remaining or parent chain, so we write it as propane
5. So the IUPAC name of the compound will be 1-(tert-butoxy)-2-methylpropane