If both particles have the SAME electrical charge, then they repel.
If they have DIFFERENT electrical charge, then they attract.
Protons have + charge .
Electrons have - charge .
So two protons (A) or two electrons (D) push apart.
One proton and one electron (C) pull together.
Answer:
b. v = 0, a = 9.8 m/s² down.
Explanation:
Hi there!
The acceleration of gravity is always directed to the ground (down) and, near the surface of the earth, has a constant value of 9.8 m/s². Since the answer "b" is the only option with an acceleration of 9.8 m/s² directed downwards, that would solve the exercise. But why is the velocity zero at the highest point?
Let´s take a look at the height function:
h(t) = h0 + v0 · t + 1/2 g · t²
Where
h0 = initial height
v0 = initial velocity
t = time
g = acceleration due to gravity
Notice that the function is a negative parabola if we consider downward as negative (in that case "g" would be negative). Then, the function has a maximum (the highest point) at the vertex of the parabola. At the maximum point, the slope of the tangent line to the function is zero, because the tangent line is horizontal at a maximum point. The slope of the tangent line to the function is the rate of change of height with respect to time, i.e, the velocity. Then, the velocity is zero at the maximum height.
Another way to see it (without calculus):
When the ball is going up, the velocity vector points up and the velocity is positive. After reaching the maximum height, the velocity vector points down and is negative (the ball starts to fall). At the maximum height, the velocity vector changed its direction from positive to negative, then at that point, the velocity vector has to be zero.
Answer:
<h2>0.069 N, in the X direction</h2>
Explanation:
According to Flemming's left hand rule, it sates that if the first three fingers of the left hand are held mutually at right angles to one another, the fore finger will point in the direction of magnetic field, the middle finger will point in direction of current, while the thumb will point to the direction of force.
Mathematically the law is stated as
F= BIL
given data
Magnetic field B= 0.43T
Current I= 4.9 A
length of conductor L= 3.3cm to meter , 3.3/100= 0.033 m
Applying the formula the force is calculated as
F= 0.43*4.9* 0.033= 0.069 N
According to Flemming's rule the direction of all parameters are mutually perpendicular to one another, then the Force is in the X direction
<u>26mm</u> is the thinnest thickness of oil that will brightly reflect the light.
What is wavelength ?
The distance over which a periodic wave's shape repeats is known as the wavelength in physics. It is a property of both traveling waves and standing waves as well as other spatial wave patterns. It is the distance between two successive corresponding locations of the same phase on the wave, such as two nearby crests, troughs, or zero crossings. The spatial frequency is the reciprocal of wavelength. The Greek letter lambda () is frequently used to represent wavelength. The term wavelength is also occasionally used to refer to modulated waves, their sinusoidal envelopes, or waves created by the interference of several sinusoids.
To learn more about wavelength visit:
brainly.com/question/16051869
#SPJ4
The answer is A. Friction.
Friction is the resisting force between two objects that move against one another.
Hope this helps! :)