Answer:
The question clearly describes the circular motion. 
The circular motion equation is 

The path of the particle is circular. 
Explanation:
In circular motion, the radial acceleration is always towards the center and constant in magnitude. Furthermore, the velocity of the circular motion is always tangential to the circle, that is it is always perpendicular to the radius, hence the acceleration. 
 
        
             
        
        
        
Answer: KE = 62.5J
Explanation:
Given that
Mass of object = 5kg
kinetic energy KE = ?
velocity of object = 5m/s
Since kinetic energy is the energy possessed by a moving object, and it depends on the mass (m) of the object and the velocity (v) by which it moves. Therefore, the object has kinetic energy.
i.e K.E = 1/2mv^2
KE = 1/2 x 5kg x (5m/s)^2
KE = 0.5 x 5 x 25
KE = 62.5J
Thus, the object has 62.5 joules of kinetic energy.
 
        
             
        
        
        
Answer:
The horizontal component of the velocity is 188 m/s
The vertical component of the velocity is 50 m/s.
Explanation:
Hi there!
Please, see the figure for a graphic description of the problem. Notice that the x-component of the vector velocity (vx), the y-component (vy) and the vector velocity form a right triangle. Then, we can use trigonometry to obtain the magnitude of vx and vy:
We can find vx using the following trigonometric rule of a right triangle:
cos α = adjacent / hypotenuse
cos 15° = vx / 195 m/s
195 m/s · cos 15° = vx 
vx = 188 m/s
The horizontal component of the velocity is 188 m/s
To calculate the y-component we will use the following trigonometric rule:
sin α = opposite / hypotenuse
sin 15° = vy / 195 m/s
195 m/s · sin 15° = vy
vy = 50 m/s
The vertical component of the velocity is 50 m/s.
 
 
        
             
        
        
        
Answer:
5. -24 m/s²
Explanation:
Acceleration: This can be defined as the rate of change of velocity.
The S.I unit of acceleration is m/s².
mathematically, 
a = dv/dt ............................ Equation 1
Where a = acceleration, dv/dt = is the differentiation of velocity with respect to time.
But
v = dx(t)/dt
Where,
x(t) = 27t-4.0t³...................... Equation 2
Therefore, differentiating equation 2 with respect to time.
v = dx(t)/dt = 27-12t²............. Equation 3.
Also differentiating equation 3 with respect to time,
a = dv/dt = -24t 
a = -24t .................... Equation 4
from the question, 
At the end of 1.0 s,
a = -24(1)
a = -24 m/s².
Thus the acceleration = -24 m/s² 
The right option is 5. -24 m/s²