To solve this problem we will apply the concepts related to the electric field. This is defined as the product between the angular frequency, the number of turns of the body (solenoid in this case) the magnetic field and the sine of the angular frequency and time. Mathematically this can be described as

Here,
= Angular frequency
N = Number of turns
B = Magnetic field
The emf has its maximum value when 
Thus the amplitude of the emf is

When number of turns of armature, area and applied magnetic field remains constant, induced emf is proportional to angular speed.

Further it can be written as follows,




Therefore the maximum amplitude of induced emf when armature rotates at 10.0rad/s is 18V
<span>The reason a static method can't access instance variable is because static references the class not a specific instance of the class so there is no instance variable to access.</span>
1. What is the force of the marble?
For an object near the surface of the earth, the gravitational force acting upon the object is given by:
F = mg
F is the gravitational force, m is the object's mass, and g is the acceleration of objects due to earth's gravity.
Given values:
m = 0.025kg, g = 9.8m/s²
Plug in the given values and solve for F:
F = 0.025×9.8
F = 0.25N
2. What is the marble's potential energy at the start of its fall?
The gravitational potential energy of an object near the earth's surface is given by:
PE = mgh
PE is the potential energy, m is the object's mass, g is the acceleration of objects due to earth's gravity, and h is the object's relative height.
new given values:
h = 0.08m
Since F = mg, you can simply multiply F×h to get PE. Use the result from question 1:
PE = F×h
PE = 0.25×0.08
PE = 0.02J
For this problem, we use the equations derived for rectilinear motion at constant acceleration. The equations are:
a = (v - v₀)/t
x = v₀t + 0.5at²
where
a is acceleration
v and v₀ are the final and initial velocities, respectively
x is the distance
t is the time
First, let's determine the a to be used in the second equation:
a = (7.5 m/s - 0 m/s)/1.7 s = 4.411 m/s²
x = (0)(1.7s) + 0.5(4.411 m/s²)(1.7 s)²
x = 6.375 m