Answer:
what is the question ? but i dont know ans
The purpose of the tensor-on-tensor regression, which we examine, is to relate tensor responses to tensor covariates with a low Tucker rank parameter tensor/matrix without being aware of its intrinsic rank beforehand.
By examining the impact of rank over-parameterization, we suggest the Riemannian Gradient Descent (RGD) and Riemannian Gauss-Newton (RGN) methods to address the problem of unknown rank. By demonstrating that RGD and RGN, respectively, converge linearly and quadratically to a statistically optimal estimate in both rank correctly-parameterized and over-parameterized scenarios, we offer the first convergence guarantee for the generic tensor-on-tensor regression. According to our theory, Riemannian optimization techniques automatically adjust to over-parameterization without requiring implementation changes.
Learn more about tensor-on-tensor here
brainly.com/question/16382372
#SPJ4
Answer:
C complex
Step-by-step explanation:
a+ bi
a is the real part and bi is the imaginary part
Together they make a complex number
Its 50. Because circumference is 314. Divide that by 3.14 and you get the diameter. Divide by another 2 and you get 50.