Answer:
common ratio=0.5, a1= 0.08
Step-by-step explanation:
r=a3/a2
r=a4/a3
compare both we get:
a3/a2=a4/a3
subtitute a2=0.04 and a4=1
a3/0.04=1/a3
(a3)^2=0.04*1
(a3)^2=0.04
taking square root in both sides
a3=0.02
For r, r=a3/a2
subtitute a3 and a2 above
r=0.02/0.04
r=0.5 common ratio
For a1
r=a2/a1
0.5=0.04/a1
a1=0.04/0.5
a1=0.08
Check out the picture I've got the full explanations on there
Hope it's clear
Answer:
60
Step-by-step explanation:
Complete question :
The GPAs of all students enrolled at a large university have an approximately normal distribution with a mean of 3.02 and a standard deviation of .29.Find the probability that the mean GPA of a random sample of 20 students selected from this university is 3.10 or higher.
Answer:
0.10868
Step-by-step explanation:
Given that :
Mean (m) = 3.02
Standard deviation (s) = 0.29
Sample size (n) = 20
Probability of 3.10 GPA or higher
P(x ≥ 3.10)
Applying the relation to obtain the standardized score (Z) :
Z = (x - m) / s /√n
Z = (3.10 - 3.02) / 0.29 / √20
Z = 0.08 / 0.0648459
Z = 1.2336940
p(Z ≥ 1.2336) = 0.10868 ( Z probability calculator)