Answer:
<em>His angular velocity will increase.</em>
Explanation:
According to the conservation of rotational momentum, the initial angular momentum of a system must be equal to the final angular momentum of the system.
The angular momentum of a system = 'ω'
where
' is the initial rotational inertia
ω' is the initial angular velocity
the rotational inertia =
where m is the mass of the system
and r' is the initial radius of rotation
Note that the professor does not change his position about the axis of rotation, so we are working relative to the dumbbells.
we can see that with the mass of the dumbbells remaining constant, if we reduce the radius of rotation of the dumbbells to r, the rotational inertia will reduce to .
From
'ω' = ω
since is now reduced, ω will be greater than ω'
therefore, the angular velocity increases.
Answer:3.56 nanosecond
In this case, you are asked the time and given the light distance(3.5ft)
To answer this question you would need to know the velocity of light. Speed of light is <span>299792458m/s. Then the calculation would be:
time= distance/speed
time= 3.5 ft / (</span>299792458m/s) x 0.3048 meter/ 1 ft= 3.56
second or 3.56 nanosecond
<u>Answer:
</u>
Cat has 2.02 seconds to right itself.
<u>Explanation:
</u>
Initial height of cat from ground = 20 meter.
We have equation of motion , , s is the displacement, u is the initial velocity, a is the acceleration and t is the time.
In this the velocity of cat in vertical direction = 0 m/s, acceleration = acceleration due to gravity = 9.8 , we need to calculate time when s = 20 meter.
Substituting
So, cat has 2.02 seconds to right itself.
"the field of force surrounding a body of finite mass in which anotherbody would experience an attractive force that is proportional to theproduct of the masses and inversely proportional to the square of thedistance between <span>them."
</span>