Answer:
Given:
Thermal Kinetic Energy of an electron, 
= Boltzmann's constant
Temperature, T = 1800 K
Solution:
Now, to calculate the de-Broglie wavelength of the electron,
:

(1)
where
h = Planck's constant = 
= momentum of an electron
= velocity of an electron
= mass of electon
Now,
Kinetic energy of an electron = thermal kinetic energy



(2)
Using eqn (2) in (1):

Now, to calculate the de-Broglie wavelength of proton,
:

(3)
where
= mass of proton
= velocity of an proton
Now,
Kinetic energy of a proton = thermal kinetic energy



(4)
Using eqn (4) in (3):

The correct answer (d.) epistemology. The major contribution of the French philosopher Rene Descartes was in the realm of epistemology. Epistemology is the theory of knowledge, including methods, validity, and its scope. It could also be concluded to separate justified fact from an opinion.
Let both the balls have the same mass equals to m.
Let
and
be the speed of the ball1 and the ball2 respectively, such that

Assuming that both the balls are at the same level with respect to the ground, so let h be the height from the ground.
The total energy of ball1= Kinetic energy of ball1 + Potential energy of ball1. The Kinetic energy of any object moving with speed,
, is 
and the potential energy is due to the change in height is
[where
is the acceleration due to gravity]
So, the total energy of ball1,

and the total energy of ball1,
.
Here, the potential energy for both the balls are the same, but the kinetic energy of the ball1 is higher the ball2 as the ball1 have the higher speed, refer equation (i)
So, 
Now, from equations (ii) and (iii)
The total energy of ball1 hi higher than the total energy of ball2.
Answer:
The torque about the origin is 
Explanation:
Torque
is the cross product between force
and vector position
respect a fixed point (in our case the origin):

There are multiple ways to calculate a cross product but we're going to use most common method, finding the determinant of the matrix:
![\overrightarrow{r}\times\overrightarrow{F} =-\left[\begin{array}{ccc} \hat{i} & \hat{j} & \hat{k}\\ F1_{x} & F1_{y} & F1_{z}\\ r_{x} & r_{y} & r_{z}\end{array}\right]](https://tex.z-dn.net/?f=%20%5Coverrightarrow%7Br%7D%5Ctimes%5Coverrightarrow%7BF%7D%20%3D-%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%20%5Chat%7Bi%7D%20%26%20%5Chat%7Bj%7D%20%26%20%5Chat%7Bk%7D%5C%5C%20F1_%7Bx%7D%20%26%20F1_%7By%7D%20%26%20F1_%7Bz%7D%5C%5C%20r_%7Bx%7D%20%26%20r_%7By%7D%20%26%20r_%7Bz%7D%5Cend%7Barray%7D%5Cright%5D%20)



Answer:
18 (VIIIa) of the periodic table. The elements are helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe), radon (Rn), and oganesson (Og)
Explanation: