1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
emmasim [6.3K]
3 years ago
14

A flatbed truck is carrying a 20.0 kg crate along a level road. the coefficient of static friction between the crate and the bed

is 0.400, and the coefficient of kinetic friction is 0.300. what is the maximum acceleration that the truck can have if the crate is to stay in place relative to the truck?
Physics
1 answer:
Dahasolnce [82]3 years ago
6 0
<span>3.92 m/s^2 Assuming that the local gravitational acceleration is 9.8 m/s^2, then the maximum acceleration that the truck can have is the coefficient of static friction multiplied by the local gravitational acceleration, so 0.4 * 9.8 m/s^2 = 3.92 m/s^2 If you want the more complicated answer, the normal force that the crate exerts is it's mass times the local gravitational acceleration, so 20.0 kg * 9.8 m/s^2 = 196 kg*m/s^2 = 196 N Multiply by the coefficient of static friction, giving 196 N * 0.4 = 78.4 N So we need to apply 78.4 N of force to start the crate moving. Let's divide by the crate's mass 78.4 N / 20.0 kg = 78.4 kg*m/s^2 / 20.0 kg = 3.92 m/s^2 And you get the same result.</span>
You might be interested in
Please help will make brainliest
kumpel [21]
The Gulf of Mexico
      OR
near trenches, in the middle of the ocean, the continental shelf, and lastly, in the United States
3 0
3 years ago
Read 2 more answers
You are coasting on your 12-kg bicycle at 13 m/s and a 5.0-g bug splatters on your helmet. The bug was initially moving at 1.5 m
Brut [27]

Answer:

a) Pi,c = 1066 kgm/s

b) Pi,b = 0.0075 kgm/s  

c) ΔV = - 0.0007 m/s

d) ΔV = - 0.0008 m/s

Explanation:

Given:-

- The mass of the bicycle, mc = 12 kg

- The mass of passenger, mp = 70 kg

- The mass of the bug, mb = 5.0 g

- The initial speed of the bicycle, vpi = 13 m/s

- The initial speed of the bug, vbi = 1.5 m/s

Find:-

a.What is the initial momentum of you plus your bicycle?

b.What is the initial momentum of the bug?

c.What is your change in velocity due to the collision the bug?

d.What would the change in velocity have been if the bug were traveling in the opposite direction?

Solution:-

- First we will set our one dimensional coordinate system, taking right to be positive in the direction of bicycle.

- The initial linear momentum (Pi,c) of the passenger and the bicycle would be:

                       Pi,c = vpi* ( mc + mp)

                       Pi,c = 13* ( 12+ 70 )

                       Pi,c = 1066 kgm/s  

- The initial linear momentum (Pi,b) of the bug would be:

                       Pi,b = vbi*mb

                       Pi,b = 0.005*1.5

                       Pi,b = 0.0075 kgm/s  

- We will consider the bicycle, the passenger and the bug as a system in isolation on which no external unbalanced forces are acting. This validates the use of linear conservation of momentum.

- The bicycle, passenger and bug all travel in the (+x) direction after the bug splatters on the helmet.

                       Pi = Pf

                       Pi,c + Pi,b = V*(mb + mc + mp)

Where,    V : The velocity of the (bicycle, passenger and bug) after collision.

                      1066 + 0.0075 = V*( 0.005 + 12 + 70 )

                      V = 1066.0075 / 82.005

                      V = 12.9993 m/s

- The change in velocity is Δv = 13 - 12.9993 =  - 0.00070 m/s      

- If the bug travels in the opposite direction then the sign of the initial momentum of the bug changes from (+) to (-).

- We will apply the linear conservation of momentum similarly.

                      Pi = Pf

                      Pi,c + Pi,b = V*(mb + mc + mp)        

                      1066 - 0.0075 = V*( 0.005 + 12 + 70 )

                      V = 1065.9925 / 82.005

                      V = 12.99911 m/s

- The change in velocity is Δv = 13 - 12.99911 =  -0.00088 m/s      

7 0
4 years ago
Read 2 more answers
Please help, thanks!
statuscvo [17]
Because it demonstrates the relationship between a body and the forces acting upon it, and its motion in response to those forces. [Hope that helps]
7 0
3 years ago
Jack has two boxes. One is 148g and one is 78g. If jack pushes both boxes with the same amount of force, which will accelerate f
Step2247 [10]
The 78g box, since it has less weight, would accelerate faster. If you had a frictionless surface, and you conducted this experiment, both boxes, without any outside forces, would accelerate at the same rate forever. However, in this problem we must assume the surface is not frictionless. Friction is determined by weight; the more weight, the more friction. Since the 78g box has less weight, it has less friction, making it easier to push with less force.
8 0
4 years ago
What happens if sulfur forms an ionic bond with another element
bija089 [108]

Answer:

The sulfur will accept the electrons

Explanation:

8 0
3 years ago
Other questions:
  • a child is riding a bike at a speed of 0.6m/s with a total kinetic energy of 12.4J.If the mass of the child is 30kg, what is the
    14·2 answers
  • What are the mechanics of a dunk tank?
    5·1 answer
  • A bucket of water can be whirled in a vertical circle without the water spilling out, even at the top of the circle when the buc
    15·2 answers
  • What objects can be seen from earth because they producde there own light? 
    14·1 answer
  • WHAT ARE THE NECESSARY CONDITIONS TO CREATE A WAVE?
    7·1 answer
  • Asteroid Ida was photographed by the Galileo spacecraft in 1993, and the photograph revealed that the asteroid has a small moon,
    10·1 answer
  • What is the speed of a wave that has a frequency of 2,400 Hz and a wavelength of 0.75
    14·1 answer
  • Plz help me with these :)
    12·2 answers
  • On a horizontal axis whose unit is the meter, a linear load ranging from 0 to 1 ma a linear load distribution = 2 nC / m.
    6·1 answer
  • determine the magnitude of the flux in kg/s (no sign, just the magnitude) of air through the surface s. the density of air is 1.
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!