The correct answer is (c.) resists a change in motion of an object. Inertia basically resists any physical changes in an object in terms of its state. As stated in the Newton's first law of motion or also known as law of inertia, an object that is at rest will stay at rest and an object that is in motion will stay in motion. In short, an object will keep doing what it is already doing UNLESS net force is acted upon it,
Complete question is;. A 73mH solenoid inductor is wound on a form that is 0.80m long and 0.10m in diameter a coil having a resistance of 7.7 ohms is tightly wound around the solenoid at its center the mutual inductance of the coil and solenoid is 19μH at a given instant the current in the solenoid is 820mA and is decreasing at the rate of 2.5A/s at the given instant what is the induced current in the coil
Answer:
6.169 μA
Explanation:
Formula for induced EMF is given by the equation;
EMF = M(di/dt). We are given;
di/dt = 2.5 A/s
M = 19μH = 19 × 10^(-6) H
Thus;
EMF = 19 × 10^(-6) × 2.5.
EMF = 47.5 × 10^(-6) V
Formula for current is;
i = EMF/R. R is resistance given as 7.7 ohms.
Thus; i = 47.5 × 10^(-6)/7.7
i = 6.169 μA
Answer:
air is the answer to the question
Answer:

Explanation:
given,
s = 400- 16 t²
we know,
Velocity of an object is defined as the change in displacement per unit change in time.
velocity an also be return as




Hence, instantaneous velocity function given by 
To calculate instantaneous velocity, you need to insert value of time.
ex, instantaneous velocity at t = 4 s
v = -32 x 4 = -128 m/s.
Answer:
Magnitude the net torque about its axis of rotation is 2.41 Nm
Solution:
As per the question:
The radius of the wrapped rope around the drum, r = 1.33 m
Force applied to the right side of the drum, F = 4.35 N
The radius of the rope wrapped around the core, r' = 0.51 m
Force on the cylinder in the downward direction, F' = 6.62 N
Now, the magnitude of the net torque is given by:

where
= Torque due to Force, F
= Torque due to Force, F'


Now,


The net torque comes out to be negative, this shows that rotation of cylinder is in the clockwise direction from its stationary position.
Now, the magnitude of the net torque:
