Radiation emitted by a body is a consequence of thermal agitation of its composing molecules. so...<span> electromagnetic waves ?</span>
Answer:

What is the humidity if the dry-bulb is 10℃ and the wet-bulb is 6℃?
<h2><u>33% According to the Graph</u></h2>
Hope this helps!
Answer:
E- The star becomes a red giant (LATEST STAGE)
F- The surface of the star becomes brighter and cooler
C- Pressure from the star's hydrogen-burning shell causes the non burning envelope to expand
A- The shell of hydrogen surrounding the star's nonburning helium core ignites.
D- The star's non burning helium core starts to contract and heat up
B- Pressure in the star's core decreases (EARLIEST STAGE)
(A star moves away from the main sequence once its core runs out of hydrogen to fuse into helium. The energy once supplied by hydrogen burning reduces and the core starts to compress under the force of gravity. This contraction allows the core and surrounding layers to heat up. Finally, the hydrogen shell around the core becomes hot enough to ignite hydrogen burning.
Answer:
To calculate the tension on a rope holding 1 object, multiply the mass and gravitational acceleration of the object. If the object is experiencing any other acceleration, multiply that acceleration by the mass and add it to your first total.
Explanation:
The tension in a given strand of string or rope is a result of the forces pulling on the rope from either end. As a reminder, force = mass × acceleration. Assuming the rope is stretched tightly, any change in acceleration or mass in objects the rope is supporting will cause a change in tension in the rope. Don't forget the constant acceleration due to gravity - even if a system is at rest, its components are subject to this force. We can think of a tension in a given rope as T = (m × g) + (m × a), where "g" is the acceleration due to gravity of any objects the rope is supporting and "a" is any other acceleration on any objects the rope is supporting.[2]
For the purposes of most physics problems, we assume ideal strings - in other words, that our rope, cable, etc. is thin, massless, and can't be stretched or broken.
As an example, let's consider a system where a weight hangs from a wooden beam via a single rope (see picture). Neither the weight nor the rope are moving - the entire system is at rest. Because of this, we know that, for the weight to be held in equilibrium, the tension force must equal the force of gravity on the weight. In other words, Tension (Ft) = Force of gravity (Fg) = m × g.
Assuming a 10 kg weight, then, the tension force is 10 kg × 9.8 m/s2 = 98 Newtons.
•To play Dr. Dodgeball you need to have 2 teams to verse each other.
•Next, select one person from each team to be the doctor (depending on the size of the teams you can have varying amounts of doctors)
•Continue to play dodgeball how you normally would
•When a player gets hit and is “out” they have to sit on the ground and wait for the doctor to “revive them” (this usually requires the doctor dragging,touching, or moving the player that is out to a “revival place” which is usually decided on by the advisor or person in charge.
•Finally, try to get all the doctors and players out from the other team. Get the doctors first, for they cannot revive themselves. Which means the other players are out after they get hit with a ball since the doctors are out. (Some games are played where if all doctors are out the game ends)
Hope this helped! Play on! And plz mark brainliest lol this was long to write :D