1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MAXImum [283]
3 years ago
8

Which object has the most gravitational potential energy?

Physics
1 answer:
Kipish [7]3 years ago
3 0

Answer: An 8 kg book at a height of 3 m has the most gravitational potential energy.

Explanation:

Gravitational potential energy is the product of mass of object, height of object and gravitational field.

So, formula to calculate gravitational potential energy is as follows.

U = mgh

where,

m = mass of object

g = gravitational field = 9.81 m/s^{2}

h = height of object

(A) m = 5 kg and h = 2m

Therefore, its gravitational potential energy is calculated as follows.

U = mgh\\= 5 kg \times 9.81 m/s^{2} \times 2 m\\= 98.1 J    (1 J = kg m^{2}/s^{2})

(B) m = 8 kg and h = 2 m

Therefore, its gravitational potential energy is calculated as follows.

U = mgh\\= 8 kg \times 9.81 m/s^{2} \times 2 m\\= 156.96 J    (1 J = kg m^{2}/s^{2})

(C) m = 8 kg and h = 3 m

Therefore, its gravitational potential energy is calculated as follows.

U = mgh\\= 8 kg \times 9.81 m/s^{2} \times 3 m\\= 235.44 J    (1 J = kg m^{2}/s^{2})

(D) m = 5 kg and h = 3 m

Therefore, its gravitational potential energy is calculated as follows.

U = mgh\\= 5 kg \times 9.81 m/s^{2} \times 3 m\\= 147.15 J    (1 J = kg m^{2}/s^{2})

Thus, we can conclude that an 8 kg book at a height of 3 m has the most gravitational potential energy.

You might be interested in
Which of the fundamental forces explains the structure of atoms and molecules?
spayn [35]
The electromagnetic force<span> holds atoms and molecules together.
like a magnet's pull on steel.</span>
7 0
3 years ago
Read 2 more answers
The floor of a railroad flatcar is loaded with loose crates having a coefficient of static friction of 0.32 with the floor. If t
coldgirl [10]

Answer:

The shortest braking distance is 35.8 m

Explanation:

To solve this problem we must use Newton's second law applied to the boxes, on the vertical axis we have the norm up and the weight vertically down

On the horizontal axis we fear the force of friction (fr) that opposes the movement and acceleration of the train, write the equation for each axis

    Y axis

     N- W = 0

     N = W = mg

  X axis

     -Fr = m a

     -μ N = m a

     -μ mg = ma

     a = μ g

     a  = - 0.32 9.8

     a =  - 3.14 m/s²

We calculate the distance using the kinematics equations

    Vf² = Vo² + 2 a x

     x = (Vf² - Vo²) / 2 a

When the train stops the speed is zero (Vf = 0)

 Vo = 54 km/h (1000m/1km) (1 h/3600s)= 15 m/s

     x = ( 0 - 15²) / 2 (-3.14)

     x=  35.8 m

The shortest braking distance is  35.8 m

7 0
3 years ago
Can someone help me answer please
Andru [333]

Answer:

4=Conduction by convection by radiation.

Explanation:

Hope it will help you! It may be short but I don't know how to write it in blank aafai milayera lekha Hai blanks ma

5 0
3 years ago
A sample with a path length of 1 cm absorbs 99.0% of the incident light at a wavelength of 274 nm, measured with respect to an a
Ksju [112]

Answer:

17. NADH has a molar extinction coefficient of 6200 M2 cm at 340 nm. Calculate the molar concentration of NADH required to obtain an absorbance of 0.1 at 340 nm in a 1-cm path length cuvette. 18. A sample with a path length of 1 cm absorbs 99.0% of the incident light at a wavelength of 274 nm, measured with respect to an appropriate solvent blank. Tyrosine is known to be the only chromophore present in the sample that has significant absorption at 274 nm. Calculate the molar concentration of tyrosine in the sample.

Explanation:

8 0
3 years ago
If one of two interacting charges is doubled, the force between the charges will _____________.
malfutka [58]

If one of two interacting charges is doubled, the force between the charges will double.

Explanation:

The force between two charges is given by Coulomb's law

F=\frac{k q1 q2}{r^{2}}

K=constant= 9 x 10⁹ N m²/C²

q1= charge on first particle

q2= charge on second particle

r= distance between the two charges

Now if the first charge is doubled,

we get F'=\frac{k (2q1) q2}{r^{2}}

F'= 2 F

Thus the force gets doubled.

4 0
3 years ago
Other questions:
  • Please help. Brainliest will be given! 25 points. Show all work.
    5·1 answer
  • SOMEONE HELP ME!!!!!
    11·2 answers
  • A rock is thrown downward from an unknown height above the ground with an initial speed of 6.1 m/s. It strikes the ground 1.7 s
    11·1 answer
  • what happens to the specific heat capacity of a material if it changes state? i.e. from solid to liquid
    8·1 answer
  • An object (even if it is not living) will resist a change in its state, either resting or in motion, this is called ____________
    6·2 answers
  • Someone is whirling a hammer that has a mass of 8.5 kg in the air that is tied to a Chain 1.5 m long in a circle that makes 1 re
    8·1 answer
  • Convert time from 12-hour to 24-hour clock. ​
    5·1 answer
  • Which is the correct equation for the force applied by a spring?
    8·1 answer
  • Which of these is NOT one of the 3 Bs of light you learned about in this lesson?
    13·1 answer
  • Lab: Waves and Diffraction<br> Assignment: Lab Report<br> Anyone have this completed
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!