The answer you looking for is D
Answer:
a. 5.9 × 10⁻³ M/s
b. 0.012 M/s
Explanation:
Let's consider the following reaction.
2 N₂O(g) → 2 N₂(g) + O₂(g)
a.
Time (t): 12.0 s
Δn(O₂): 1.7 × 10⁻² mol
Volume (V): 0.240 L
We can find the average rate of the reaction over this time interval using the following expression.
r = Δn(O₂) / V × t
r = 1.7 × 10⁻² mol / 0.240 L × 12.0 s
r = 5.9 × 10⁻³ M/s
b. The molar ratio of N₂O to O₂ is 2:1. The rate of change of N₂O is:
5.9 × 10⁻³ mol O₂/L.s × (2 mol N₂O/1 mol O₂) = 0.012 M/s
Answer:
8.33mol/L
Explanation:
First, let us calculate the molar mass of of formaldehyde (CH2O). This is illustrated below:
Molar Mass of CH2O = 12 + (2x1) + 16 = 12 + 2 + 16 = 30g/mol
Mass of CH2O from the question = 0.25g
Number of mole CH2O =?
Number of mole = Mass /Molar Mass
Number of mole of CH2O = 0.25/30 = 8.33x10^-3mole
Now we can calculate the molarity of formaldehyde (CH2O) as follow:
Number of mole of CH2O = 8.33x10^-3mole
Volume = 1mL
Converting 1mL to L, we have:
1000mL = 1L
Therefore 1mL = 1/1000 = 1x10^-3L
Molarity =?
Molarity = mole /Volume
Molarity = 8.33x10^-3mole/1x10^-3L
Molarity = 8.33mol/L
Therefore, the molarity of formaldehyde (CH2O) is 8.33mol/L