Answer:4A
Explanation:
Given
Mass is displace x= A units from its mean position x=0'
When it is set to free it will oscillate about its mean position with maximum amplitude A i.e. from x=-A to x=A
One cycle is completed when block returns to its original position
so first block will go equilibrium position x=0 and then to x=-A
from x=-A it again moves back to x=0 and finally back to its starting position x=A
so it travels a distance of A+A+A+A=4A
The purpose of the machine is to leverage its mechanical advantage such that the force it outputs to move the heavy object is greater than the force required for you to input.
But there's no such thing as a free lunch! When you apply the conservation of energy, the work the machine does on the object will always be equal to (in an ideal machine) or less than the work you input to the machine.
This means that you will apply a lesser force for a longer distance so that the machine can supply a greater force on the object to push it a smaller distance. That is the trade-off of using the machine: it enables you to use a smaller force but at the cost of having to apply that smaller force for a greater distance.
The answer is: The work input required will equal the work output.
The hypothetical upper limit to the mass a star can be before it self-destructs due to the massive amount of fusion it would produce is apparently as a result of <u>Eddington luminosity</u>
<h3>What are stars?</h3>
Stars are a fixed luminous point in the sky which is a large and remote incandescent body
So therefore, the hypothetical upper limit to the mass a star can be before it self-destructs due to the massive amount of fusion it would produce is apparently as a result of Eddington luminosity
Learn more about stars:
brainly.com/question/13018254
#SPJ1
<span>more lines = a lot of electrons returning back to ground state from same level</span>