The Kepler mission is specifically designed to survey a portion of our region of the Milky Way galaxy<span> to discover dozens of Earth-size planets in or near the </span>habitable zone<span> and determine how many of the billions of stars in our galaxy have such planets</span>
Answer:
Frictional force, F = 45.9 N
Explanation:
It is given that,
Weight of the box, W = 150 N
Acceleration, 
The coefficient of static friction between the box and the wagon's surface is 0.6 and the coefficient of kinetic friction is 0.4.
It is mentioned that the box does not move relative to the wagon. The force of friction is equal to the applied force. Let a is the acceleration. So,



Frictional force is given by :


F = 45.9 N
So, the friction force on this box is closest to 45.9 N. Hence, this is the required solution.
Answer:
735 J
Explanation:
From the question given above, the following data were obtained:
Weight (W) = 49 N
Height (h) = 15 m
Potential energy =?
Potential energy is simply defined as the product of weight of the object and height to which the object is raised. Mathematically, it is expressed as:
Potential energy = weight × height
With the above formula, we can obtain the potential energy of the coconut as follow:
Weight (W) = 49 N
Height (h) = 15 m
Potential energy =?
Potential energy = weight × height
Potential energy = 49 × 15
Potential energy = 735 J
Thus, the potential energy of the coconut is 735 J
D
Its D i think because it doesnt refer to any other things
Based on radiometric dating of Apollo rock samples, the rocks have been detected to be about 4.5 Billion years old.
Hope this helps!