Answer:
The maximum temperature is 90.06° C
Explanation:
Given that
t= 0.1 mm
Heat generation

Heat transfer coefficient

Here one side(left side) of the wall is insulated so the all heat will goes in to right side .
The maximum temperature will at the left side.
Lets take maximum temperature is T
Total heat flux ,q



So the total thermal resistance per unit area


R=0.002 K/W
We know that
q=ΔT/R
30=(T-90)/0.002
T=90.06° C
The maximum temperature is 90.06° C
Answer:
Part 1)
Boat A will win the race
Part 2)
Boat A will win the race by 48 km as the 2nd boat will reach the other end while boat A will just touches the finish line
Part 3)
average velocity must be zero
Explanation:
As we know that the distance moved by the boat is given as

now the time taken by the boat to move to and fro is given as



Time taken by Boat B to cover the distance


Part 1)
Boat A will win the race
Part 2)
Boat A will win the race by 48 km as the 2nd boat will reach the other end while boat A will just touches the finish line
Part 3)
Since the displacement of Boat A is zero
so average velocity must be zero
I believe it is
1.6x=2.7(x-1.8)
1.1x=2.7*1.8
x~4.4
4.4*1.6
~7.1m
With arms outstretched,
Moment of inertia is I = 5.0 kg-m².
Rotational speed is ω = (3 rev/s)*(2π rad/rev) = 6π rad/s
The torque required is
T = Iω = (5.0 kg-m²)*(6π rad/s) = 30π
Assume that the same torque drives the rotational motion at a moment of inertia of 2.0 kg-m².
If u = new rotational speed (rad/s), then
T = 2u = 30π
u = 15π rad/s
= (15π rad/s)*(1 rev/2π rad)
= 7.5 rev/s
Answer: 7.5 revolutions per second.
The image produced is magnified and real.