1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
d1i1m1o1n [39]
2 years ago
14

A car is moving 18 m/s to the east. if it takes the car 5 seconds to reach a velocity of 19 m/s to the east, what is its acceler

ation?
A. 1 m/s2 east
B. 0.2 m/s2 west
C. 0.2 m/s2 east
D. 5 m/s2 east
Physics
2 answers:
almond37 [142]2 years ago
5 0
<span>C. 0.2 m/s2 east

Hope it helps!
</span>
kakasveta [241]2 years ago
4 0
<h2>Option C is the correct answer.</h2>

Explanation:

We have equation of motion v = u + at

Initial velocity, u = 18 m/s to east

Final velocity, v = 19 m/s to east

Acceleration, a = ?

Time, t = 5 s

Substituting

             v = u + at

             19 = 18 + a x 5

              1 = 5a

               a = 0.2 m/s²

Since the velocity direction is towards east, direction of acceleration is also towards east.

So acceleration is 0.2 m/s² towards east.

Option C is the correct answer.

You might be interested in
A 2.7-kg block is released from rest and allowed to slide down a frictionless surface and into a spring. The far end of the spri
exis [7]

a) The speed of the block at a height of 0.25 m is 2.38 m/s

b) The compression of the spring is 0.25 m

c) The final height of the block is 0.54 m

Explanation:

a)

We can solve the problem by using the law of conservation of energy. In fact, the total mechanical energy (sum of kinetic+gravitational potential energy) must be conserved in absence of friction. So we can write:

U_i +K_i = U_f + K_f

where

U_i is the initial potential energy, at the top

K_i is the initial kinetic energy, at the top

U_f is the final potential energy, at halfway

K_f is the final kinetic energy, at halfway

The equation can be rewritten as

mgh_i + \frac{1}{2}mu^2 = mgh_f + \frac{1}{2}mv^2

where:

m = 2.7 kg is the mass of the block

g=9.8 m/s^2 is the acceleration of gravity

h_i = 0.54 is the initial height

u = 0 is the initial speed

h_f = 0.25 m is the final height of the block

v is the final speed when the block is at a height of 0.25 m

Solving for v,

v=\sqrt{u^2+2g(h_i-h_f)}=\sqrt{0+2(9.8)(0.54-0.25)}=2.38 m/s

b)

The total mechanical energy of the block can be calculated from the initial conditions, and it is

E=K_i + U_i = 0 + mgh_i = (2.7)(9.8)(0.54)=14.3 J

At the bottom of the ramp, the gravitational potential energy has become zero (because the final heigth is zero), and all the energy has been converted into kinetic energy. However, then the block compresses the spring, and the maximum compression of the spring occurs when the block stops: at that moment, all the energy of the block has been converted into elastic potential energy of the spring. So we can write

E=E_e = \frac{1}{2}kx^2

where

k = 453 N/m is the spring constant

x is the compression of the spring

And solving for x, we find

x=\sqrt{\frac{2E}{k}}=\sqrt{\frac{2(14.3)}{453}}=0.25 m

c)

If there is no friction acting on the block, we can apply again the law of conservation of energy. This time, the initial energy is the elastic potential energy stored in the spring:

E=E_e = 14.3 J

while the final energy is the energy at the point of maximum height, where all the energy has been converted into gravitational potetial energy:

E=U_f = mg h_f

where h_f is the maximum height reached. Solving for this quantity, we find

h_f = \frac{E}{mg}=\frac{14.3}{(2.7)(9.8)}=0.54 m

which is the initial height: this is correct, because the total mechanical energy is conserved, so the block must return to its initial position.

Learn more about kinetic and potential energy:

brainly.com/question/1198647

brainly.com/question/10770261

brainly.com/question/6536722

#LearnwithBrainly

5 0
3 years ago
4.77 Augment the rectifier circuit of Problem 4.70 with a capacitor chosen to provide a peak-to-peak ripple voltage of (i) 10% o
goblinko [34]

The question incomplete! The complete question along with answer and explanation is provided below.

Question:

Augment the rectifier circuit of Problem 4.68 with a  capacitor chosen to provide a peak-to-peak ripple voltage of  (i) 10% of the peak output and (ii) 1% of the peak output. In  each case:

(a) What average output voltage results?

(b) What fraction of the cycle does the diode conduct?

(c) What is the average diode current?

(d) What is the peak diode current?

Problem 4.68:

A half-wave rectifier circuit with a 1-kΩ load operates from a 120-V (rms) 60-Hz household supply through  a 10-to-1 step-down transformer. It uses a silicon diode  that can be modeled to have a 0.7-V drop for any current.

Given Information:

Input voltage = 120 Vrms

10 to 1 step-down transformer

Voltage drop at diode = 0.7 V

Load resistance = R = 1 kΩ

Required Information:

 (i) 10% of the peak output and (ii) 1% of the peak output. In  each case:

(a) What average output voltage results?

(b) What fraction of the cycle does the diode conduct?

(c) What is the average diode current?

(d) What is the peak diode current?

Answer:

Case (i)

Vavg = 15.45 V

Conduction of diode = 7.11 %

Iavg = 0.232 A

Ip = 0.449 A

Case (ii)

Vavg = 16.18 V

Conduction of diode = 2.25 %

Iavg = 0.735 A

Ip = 1.453 A

Explanation:

Voltage at the secondary side of the transformer is

Vrms = Vpri/turn ratio

Vrms = 120/10 = 12 V

The relation between rms voltage and peak voltage is

Vp = Vrms/√2

Vp = 12√2 = 16.97 V

Vd = 0.7 V

First we will calculate all the required parameters for the 10% ripple voltage and then for 1% ripple voltage.

case (i) 10% of the peak output:

(a) What average output voltage results?

Average output voltage = Vavg = Vp - Vd - 0.5Vr

Where Vp is the peak output voltage Vd is the voltage drop of diode and Vr is the ripple voltage which is given as a percentage of Vp

Vavg = Vp - Vd - 0.5Vr

Vavg = 16.97 - 0.7 - 0.5[0.1(16.97 - 0.7)]

Vavg = 15.45 V

(b) What fraction of the cycle does the diode conduct?

ω = √2Vr/Vp - Vd

ω = √2*0.1(Vp-Vd)/Vp - Vd

ω = √2*0.1(16.97-0.7)/16.97 - 0.7

ω = 0.447 rad

Conduction of diode = (ω/2π)*100

Conduction of diode = (0.447/2π)*100

Conduction of diode = 7.11 %

(c) What is the average diode current?

Average current = Iavg = Vavg/R[ 1 + π( √2(Vp - Vd)/0.1(Vp-Vd))]

Average current = Iavg = 15.45/1000[ 1 + π( √2(16.97 - 0.7)/0.1(16.97-0.7))]

Average current = Iavg = 0.232 A

(d) What is the peak diode current?

Peak current = Ip = Vavg/R[ 1 + 2π( √2(Vp - Vd)/0.1(Vp-Vd))]

Peak current = Ip = 15.45/1000[ 1 + 2π( √2(16.97 - 0.7)/0.1(16.97-0.7))]

Peak current = Ip = 0.449 A

case (ii) 1% of the peak output:

(a) What average output voltage results?

Vavg = 16.97 - 0.7 - 0.5[0.01(16.97 - 0.7)]

Vavg = 16.18 V

(b) What fraction of the cycle does the diode conduct?

ω = √2*0.01(Vp-Vd)/Vp - Vd

ω = √2*0.01(16.97-0.7)/16.97 - 0.7

ω = 0.1417 rad

Conduction of diode = (0.1417/2π)*100

Conduction of diode = 2.25 %

(c) What is the average diode current?

Average current = Iavg = 16.18/1000[ 1 + π( √2(16.97 - 0.7)/0.01(16.97-0.7))]

Average current = Iavg = 0.735 A

(d) What is the peak diode current?

Peak current = Ip = 16.18/1000[ 1 + 2π( √2(16.97 - 0.7)/0.01(16.97-0.7))]

Peak current = Ip = 1.453 A

3 0
3 years ago
4.5 billion km, the average separation between the sun and Neptune (report answer in hours). How long does it take light to trav
Liula [17]

Answer:

t = 4.17 hours

Explanation:

given,

The distance between Sun and Neptune, d = 4.5 billion Km

                                                                         = 4.5 x 10⁹ Km

                                                                          = 4.5 x 10¹¹ m

The velocity of light, c = 3 x 10⁸ m/s

The velocity is always equal to displacement by the time.

                                           <em>V = d / t    m/s</em>

∴                                           t = d / V

                                               = 4.5 x 10¹¹ m / 3 x 10⁸ m/s

                                               = 15,000 s

                                               = 4.17 h

Hence, the time taken by the light rays to reach the Neptune is, t = 4.17 h

4 0
2 years ago
A 1000-kg whale swims horizontally to the right at a speed of 6.0 m/s. It suddenly collides directly with a stationary seal of m
anzhelika [568]

Answer:

Momentum after collision will be 6000 kgm/sec

Explanation:

We have given mass of the whale = 1000

Initial velocity v = 6 m/sec

It collides with other mass of 200 kg which is at stationary

Initial momentum of the whale = 1000×6 = 6000 kgm/sec

We have to find the momentum after collision

From conservation of momentum

Initial momentum = final momentum

So final momentum = 6000 kgm/sec

5 0
3 years ago
Electromagnets are created by?
AysviL [449]
A coil of insulated wire around an iron core 
7 0
3 years ago
Read 2 more answers
Other questions:
  • Davina accelerates a box across a smooth frictionless horizontal surface over a displacement of 18.0 m with a constant 25.0 N fo
    8·1 answer
  • Newton’s first law of motion applies to what?
    8·1 answer
  • What is the force, in units of femtoNewtons, on an electron moving at a velocity of 7.26 x 106 ms-1 perpendicularly to a magneti
    9·1 answer
  • What causes the spiral structural in milky way?
    7·1 answer
  • Microphone Electricity needs
    10·1 answer
  • At what vertical velocity should no object be launched at in order to achieve a height of 20m?​
    12·1 answer
  • An athlete runs 200 m by running 100 m in a straight line and then turning around and running 100m back to the start point.
    15·1 answer
  • A women weighs 857 N. What is her mass?
    13·2 answers
  • Facts about earths rotation
    14·2 answers
  • In a single-slit diffraction experiment, the width of the slit through which light passes is reduced. what happens to the width
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!