I believe it’s 60km/h
I divided the total distance (120 km) by the time it took to get there (2h) to get this.
Explanation:
Most waves appear complex because they result from two or more simple waves that combine as they come together at the same place at the same time—a phenomenon called superposition. Waves superimpose by adding their disturbances; each disturbance corresponds to a force, and all the forces add
introurself please
Very high-energy objects and events spit out very high-energy photons, so the instrument you need in order to detect them is the X-ray telescope. <em>(C) </em>
Inconveniently, X-ray telescopes only work when they're up in orbit, because X-rays get seriously soaked up in Earth's atmosphere, and most of them never make it down to the surface ... (lucky for us !) .
Answer:
Explanation:
Given that
g=9.8m/s²
The spring constant is
k=50N/m
The length of the bungee cord is
Lo=32m
Height of bridge which one end of the bungee is tied is 91m
A steel ball of mass 92kg is attached to the other end of the bungee.
The potential energy(Us) of the steel ball before dropped from the bridge is given as
P.E= mgh
P.E= 92×9.8×91
P.E= 82045.6 J
Us= 82045.6 J
Potential energy)(Uc) of the cord is given as
Uc= ½ke²
Where 'e' is the extension
Then the extension is final height extended by cord minus height of cord
e=hf - hi
e=hf - 32
Uc= ½×50×(hf-32)²
Uc=25(hf-32)²
Using conservation of energy,
Then,
The potential energy of free fall equals the potential energy in string
Uc=Us
25(hf-32)²=82045.6
(hf-32)² = 82045.6/25
(hf-32)²=3281.825
Take square root of both sides
√(hf-32)²=√(3281.825)
hf-32=57.29
hf=57.29+32
hf=89.29m
We neglect the negative sign of the root because the string cannot compressed
Answer:
The polar coordinate of
is
.
Explanation:
Given a point in rectangular form, that is
, its polar form is defined by:
(1)
Where:
- Norm, measured in meters.
- Direction, measured in sexagesimal degrees.
The norm of the point is determined by Pythagorean Theorem:
(2)
And direction is calculated by following trigonometric relation:
(3)
If we know that
and
, then the components of coordinates in polar form is:


Since
and
, direction is located at 3rd Quadrant. Given that tangent function has a period of 180º, we find direction by using this formula:


The polar coordinate of
is
.