<em>The answer is </em>Ninth <em>and </em>Tenth <em>grade so the answer would be</em> B
<em>I hope this helps you </em>
The force of gravity F_g will act downwards.
Normal force F_N will act upwards equal to the force of gravity.
A force due to uniform acceleration F_a will act upwards to move the elevator upwards.
Thus, figure E is the correct answer.
Answer:
Time, t = 0.87 seconds
Explanation:
Given that,
Initial velocity of the object, u = 4.3 m/s
The coefficient of kinetic friction between horizontal tabletop and the object is 0.5
We need to find the time taken by the object for the object to come to rest i.e. final velocity will be 0.
Using first equation of motion to find it as :

a is the acceleration, here, 


So, the time taken by the object to come at rest is 0.87 seconds. Hence, this is the required solution.
Answer:
μ = 0.33
Equal to 3.2 m/s²
Explanation:
Draw a free body diagram of the block. There are three forces:
Normal force N pushing up.
Weight force mg pulling down.
Friction force Nμ pushing opposite the direction of motion.
Sum of forces in the y direction.
∑F = ma
N − mg = 0
N = mg
Sum of forces in the x direction.
∑F = ma
Nμ = ma
Substitute.
mgμ = ma
μ = a/g
μ = (3.2 m/s²) / (9.8 m/s²)
μ = 0.33
As found earlier, the acceleration is a = gμ. Since g and μ are constant, a is also constant, so it does not change with velocity.
Answer:
0.84 s
Explanation:
Step 1
Given information:
Mass of the ice (m) = 2.0 kg
Heat transfer rate (Q/T) = 793.0 kW
Latent heat of fusion of ice (Lf) = 334 kJ/kg

Substituting the corresponding values we have:
