Answer:
The chemist would require to use 43.43 grams.
Explanation:
In order to solve this problem we need to know<u> how much do 0.550 moles of selenium weigh</u>. To do that we use selenium's<em> molar mass </em>and multiply it by the given number of moles:
- 0.550 mol * 78.96 g/mol = 43.43 g
The chemist would require to use 43.43 grams.
Combination
Hope this helps :)
Answer:
To balance a reaction, the amount of reactants must be equal to the amount of products, as stated by the Law of Conservation of Matter. It may help you to keep track of the number of each element in a list as you try to balance. It's not able to be balanced.
The answer is 4.9 moles.
Solution:
Using the equation for boiling point elevation Δt,
Δt = i Kb m
we can rearrange the expression to solve for the molality m of the solution:
m = Δt / i Kb
Since we know that pure water boils at 100 °C, and the Ebullioscopic constant Kb for water is 0.512 °C·kg/mol,
m = (105°C - 100°C) / (2 * 0.512 °C·kg/mol)
= 4.883 mol/kg
From the molality m of the solution of salt added in a kilogram of water, we can now find the number of moles of salt:
m = number of moles / 1.0kg
number of moles = m*1.0kg
= (4.883 mol/kg) * (1.0kg)
= 4.9 moles
The answer is homogenous i think