Even though there is no followings, I will try to include in this answer all the possible answers. I am sure about two elements that bound to hemoglobin when hemoglobin is in the R-state :Fe+2 and O2. As you should know, <span> R-state of hemoglobin is a relaxed form that is also called</span> <span>oxyhemoglobin, so the O2 definitely must be mentioned in there.</span>
Answer:
63.616
Explanation:
DATA
1. first atomic mass;m1=63
- second atomic mass;m2=65
- first percentage;p1= 69.2%
- second percentage me;p2=30.8%
- average mass;avg= ?
SOLUTION
avg=<u> (m1)(p1) + (m2)(</u><u>p2</u><u>)</u>
100
avg= <u>(63)(69.2) + (65)(30.8)</u>
100
avg= <u>4</u><u>3</u><u>5</u><u>9</u><u>.</u><u>6</u><u> </u><u>+</u><u> </u><u>2</u><u>0</u><u>0</u><u>2</u>
100
avg= <u>6361.6</u>
100
avg= 63.616
Answer:
The answer to your question is 0.62 atm = 62.82 kPa = 471.2 mmHg
Explanation:
Data
P = 0.62 atm
P = ? kPa
P = ? mmHg
Process
1.- Look for the conversion factor of atm to kPa and mmHg
1 atm = 101.325 kPa
1 atm = 760 mmHg
2.- Do the conversions
1 atm ----------------- 101.325 kPa
0.62 atm ------------ x
x = (0,62 x 101.325) / 1
x = 62.82 kPa
1 atm ------------------ 760 mmHg
0.62 atm ------------ x
x = (0.62 x 760)/1
x = 471.2 mmHg
A coordination number can be determined by the usage of an atom towards a molecule from seeing how many numbers of atoms would have to be combined together in an atom.
Concave is not a type of mechanical wave because it doesn’t need a medium for propagation.