Answer:
The three statements are true
Explanation:
For the reaction:
I₂O₅(s) + 5CO(g) → I₂(s) + 5CO₂(g)
State oxidation of iodine in I₂O₅ is:
5 O²⁻ = 10⁻
As you have 2 I and the molecule has no charge, <em>oxidation state of I is +5</em>.
The carbon in CO has an oxidation state of +2 and in CO₂ is +4. That means <em>the carbon is oxidized</em>
<em />
An oxidizing agent is a substance that produce the oxidation of the agent that reacts with this one. CO is oxidized because of I₂O₅ is producing its oxidation being <em>the oxidizing agent</em>
<em></em>
Thus,<em> the three statements are true</em>.
They drill too deep and find lava
the reaction is
2NO(g) + 2H2(g) <—> N2(g) + 2H2O (g)
Kc = [N2] [ H2O]^2 / [NO]^2 [ H2]^2
Given
moles of NO = 0.124 therefore [NO] = moles /volume = 0.124 /2 = 0.062
moles of H2 = 0.0240 , therefore [H2] = moles / volume = 0.0240 / 2 = 0.012
moles of N2 = 0.0380 , therefore [N2] = moles / volume = 0.0380 / 2 = 0.019
moles of H2O = 0.0276 , therefore [H2O] = moles / volume = 0.0276 / 2 = 0.0138
Kc = (0.019) ( 0.0138)^2 / (0.062)^2 ( 0.012)^2 = 6.54
<h3><u>Answer;</u></h3>
D. It decreases and the pH increases.
<h3><u>Explanation;</u></h3>
- pH is a measure of the hydorgen ion concentration of a solution. Solutions with a high concentration of hydrogen ions have a low pH and solutions with a low concentrations of H+ ions have a high pH.
- <em><u>[H+] and [OH-] are inversely related. Therefore; As the concentration of H+ increases the pH decreases. Since the concentrations of H+ and OH- are inversely proportional, as one goes up, the other goes down. </u></em>
- <em><u>Therefore, an increase in OH- concentration will correspond to an increase in pH and a decrease in the concentration of H+.</u></em>
Answer:
A colloid is a heterogeneous mixture in which the dispersed particles are intermediate in size between those of a solution and a suspension. The particles are spread evenly throughout the dispersion medium, which can be a solid, liquid, or gas.
Explanation: