Ability to moderate temperatures is not a property of water
Answer:
It is necessary because Trans-cinnamic is a limiting reagent in the mixture reaction while Bromine is the excess reagent
Explanation:
It is necessary to maintain excess bromine in the reaction mixture because Bromine is the excess reagent in the reaction mixture and if it's quantity is less it would consume the limiting reagent ( Trans-cinnamic ) completely . hence Bromine should maintain excess quantity in the reaction mixture
Answer:
Oxidation occurs at the anode: Fe(s) | Fe2+(aq) half cell. (ii) Reduction occurs at the cathode: Ag(s) | Ag+(aq) half cell. Oxidation occurs at the anode: Pt | Sn2+(aq), Sn4+(aq) half cell. (iii) Electrons flow from the anode to the cathode: from the Pt(s) → Ag(s) electrode.
Answer:
The enthalpy change for the given reaction is 424 kJ.
Explanation:

We have :
Enthalpy changes of formation of following s:



(standard state)
![\Delta H_{rxn}=\sum [\Delta H_f(product)]-\sum [\Delta H_f(reactant)]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5Csum%20%5B%5CDelta%20H_f%28product%29%5D-%5Csum%20%5B%5CDelta%20H_f%28reactant%29%5D)
The equation for the enthalpy change of the given reaction is:
=

=


The enthalpy change for the given reaction is 424 kJ.