A salt derived from a weak base and a strong acid will yield an acid salt
The characteristics of solids that is most responsible for their structure are:
1. BONDING PATTERNS BETWEEN ATOMS.
2. TYPES OF MATTER IN SOLIDS.
Solid state is one of the four states of matter that exist; the other three are liquid, gas and plasma. Solids generally have their constituent particles arranged in a regular pattern, which is known as crystalline structure. The crystalline structure of the solid is due to the types of matter and the chemical bonds that exist between the particles of solids. The constituent particles of a solid can be atoms, ions or molecules.
Answer:
When melted or dissolved in water.
Explanation:
Potassium bromide in its solid form contains ions, which are charged atoms. Through the heating process, the melted potassium bromide becomes an ionic liquid. If solid potassium bromide is dissolved, for example in water, the resulting release of ions allows it to conduct electricity.
Answer:
The final volume will be 5.80 L
Explanation:
Step 1: Data given
Number of moles gas = 0.140 moles
Volume of gas = 2.78 L
Number of moles added = 0.152 moles
Step 2: Calculate the final volume
V1/n1 = V2/n2
⇒ with V1 = the initial volume = 2.78 L
⇒ with n1 = the initial number of moles = 0.140 moles
⇒ with V2 = The new volume = TO BE DETERMINED
⇒ with n2 = the new number of moles = 0.140 + 0.152 = 0.292 moles
2.78/0.140 = V2 /0.292
V2 = 5.80 L
The final volume will be 5.80 L
Answer is: 5,75·10⁻¹.
Kf = 2,3·10⁶ 1/s.
K = 4,0·10⁸ 1/s.
Kr = ?
Kf - <span>forward rate constant.
K - </span><span>equilibrium constant.
Kr - </span><span>reverse rate constant.
</span>Since both Kf and Kr are constants at a given temperature, their ratio is also a constant that
is equal to the equilibrium constant K.<span>
K = Kf/Kr.
Kr = Kf/K = </span>2,3·10⁶ 1/s ÷ 4,0·10⁸ 1/s = 5,75·10⁻¹.