The volume (in mL) of 0.242 M NaOH solution needed for the titration reaction is 39.44 mL
<h3>Balanced equation </h3>
CH₃CH₂COOH + NaOH —> CH₃CH₂COONa + H₂O
From the balanced equation above,
- The mole ratio of the acid, CH₃CH₂COOH (nA) = 1
- The mole ratio of the base, NaOH (nB) = 1
<h3>How to determine the volume of NaOH</h3>
- Volume of acid, CH₃CH₂COOH (Va) = 46.79 mL
- Molarity of acid, CH₃CH₂COOH (Ma) = 0.204 M
- Molarity of base, NaOH (Mb) = 0.242 M
- Volume of base, KOH (Vb) =?
MaVa / MbVb = nA / nB
(0.204 × 46.79) / (0.242 × Vb) = 1
Cross multiply
0.242 × Vb = 0.204 × 46.79
Divide both side by 0.242
Vb = (0.204 × 46.79) / 0.242
Vb = 39.44 mL
Thus, the volume of NaOH needed for the reaction is 39.44 mL
Learn more about titration:
brainly.com/question/14356286
Answer:
Yes, this answer is correct.
Explanation:
Absolute zero is -273.15 degrees celsius
T= Tc+273.15
T is the kelvin temperature
Tc is the temperature in degrees celsius
substitute;
T= -273.15 + 273.15
T=0 K
:)
Answer:
All compounds are molecules
I got you! i hope i helped
Explanation:
Answer:
Explanation:
Discussion
When Pressure increases equilibrium shifts to the side with the smallest number of moles. But which side is that?
N2(g) + 3H2(g) ⇌ 2NH3(g)
The left side has 1 mol of nitrogen (N2) and 3 moles of Hydrogen = 4 mols
on the left side.
The right side has 2 mols of NH3 = 2 mols on the right.
Conclusion: You tell the number of mols by the Balance numbers to the left of each chemical in an equation.
Since the left side N2 + 3H2 = 4 mols, the equilibrium does NOT shift left.
2NH3 is only two mols.
The equilibrium shifts Right
Answer
D