Explanation:
Given that,
The voltages across them are 40,50 and 60 volts respectively, and the charge on each condenser is 6×10⁻⁸ C.
(a) Capacitance of capacitor 1,

Capacitance of capacitor 2,

Capacitance of capacitor 3,

(b) The equivalent capacitance in series combination is :

Hence, this is the required solution.
Answer:
Frequency of oscillation, f = 4 Hz
time period, T = 0.25 s
Angular frequency, 
Given:
Time taken to make one oscillation, T = 0.25 s
Solution:
Frequency, f of oscillation is given as the reciprocal of time taken for one oscillation and is given by:
f = 
f = 
Frequency of oscillation, f = 4 Hz
The period of oscillation can be defined as the time taken by the suspended mass for completion of one oscillation.
Therefore, time period, T = 0.25 s
Angular frequency of oscillation is given by:



Answer:
The force when θ = 33° is 1.7625 times of the force when θ = 18°
Explanation:
The force on a moving charge through a magnetic field is given by
F = qvB sin θ
q = charge of the moving particle
v = Velocity of the moving charge
B = Magnetic field strength
θ = angle between the magnetic field and the velocity (direction of the motion) of the moving charge
Because qvB are all constant, we can call the expression K.
F = K sinθ
when θ = 18°,
F = K sin 18° = 0.309K
when θ = 33°, let the force be F₁
F₁ = K sin 33° = 0.5446K
(F₁/F) = (0.5446K/0.309K) = 1.7625
F₁ = 1.7625 F
Hope this Helps!!!
Answer:
Explanation:
Answer is in the attachment below:
The average kinetic energy of a gas particle is directly proportional to thetemperature. An increase intemperature increases the speed in which the gas molecules move. Allgases at a given temperature have the same average kinetic energy. Lightergas molecules move faster than heavier molecules.