Answer:
1.76m/s²
Explanation:
Given parameters:
Initial velocity = 0m/s
Final velocity = 65m/s
Distance traveled = 1200m
Unknown:
Acceleration = ?
Solution:
This is linear velocity and we apply the appropriate motion equation to solve this problem.
V² = U² + 2as
S is the distance
u is the initial velocity
V is the final velocity
a is the acceleration
Now, insert the parameters and solve;
65² = 0² + 2 x a x 1200
4225 = 2400a
a = 1.76m/s²
The answer is B. Response Criteria
I hope this helps!!
Answer:
13.7m
Explanation:
Since there's no external force acting on the astronaut or the satellite, the momentum must be conserved before and after the push. Since both are at rest before, momentum is 0.
After the push

Where
is the mass of the astronaut,
is the mass of the satellite,
is the speed of the satellite. We can calculate the speed
of the astronaut:

So the astronaut has a opposite direction with the satellite motion, which is further away from the shuttle. Since it takes 7.5 s for the astronaut to make contact with the shuttle, the distance would be
d = vt = 1.83 * 7.5 = 13.7 m
Answer:
A & D
Explanation:
A single-displacement reaction is a chemical reaction whereby one element is substituted for another one in a compound and thereby generating a new element and also a new compound as products.
From the options, only options A & D fits this definition of single-displacement reactions.
For option D: Both left and hand and right hand sides each have one element and one compound. We can see that K is substituted from KBr to join Cl to form KCl and Br2 on the right hand side.
For option A: Both left and hand and right hand sides each have one element and one compound. We can see that OH is substituted from 2H2O to join Mg to form Mg(OH)2 and H2 on the right hand side.
The other options are not correct because they don't involve only and element and a compound on each side of the reaction.