1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LenKa [72]
3 years ago
14

The energy difference in these two conformations has been measured to be about 23 kj per mole. how much of this energy differenc

e is due to the torsional energy of gauche relationships?
Physics
1 answer:
Phantasy [73]3 years ago
8 0

Answer:

The answer is 7.8 kJ / mol.

Explanation:

Energy = (number of methyl group) (Gauche interactions)(3.8kJ/mol per interaction)

           = (2)(2)(3.8 kJ / mol)

            = 15.2 kJ / mol.

The energy  = (number of methyl group) - ( energy of gauche interactions)

                    = (23 kJ/mol) - 15.2 kJ/mol

                    = 7.8 kJ / mol.

You might be interested in
A paper clip is made of wire 0.5 mm in diameter. If the original material from which the wire is made is a rod 25 mm in diameter
gizmo_the_mogwai [7]

Answer:

longitudinal engineering strain = 624.16

true strain is 6.44

Explanation:

given data

diameter d1 = 0.5 mm

diameter d2 = 25 mm

to find out

longitudinal engineering and true strains

solution

we know both the volume is same

so

volume 1 = volume 2

A×L(1) = A×L(2)

( π/4 × d1² )×L(1) = ( π/4 × d2² )×L(2)

( π/4 × 0.5² )×L(1) = ( π/4 × 25² )×L(2)

0.1963 ×L(1) = 122.71 ×L(2)

L(1) / L(2) = 122.71 / 0.1963 = 625.16

and we know longitudinal engineering strain is

longitudinal engineering strain = L(1) / L(2)  - 1

longitudinal engineering strain = 625.16  - 1

longitudinal engineering strain = 624.16

and

true strain is

true strain = ln ( L(1) / L(2))

true strain = ln ( 625.16)

true strain is 6.44

3 0
4 years ago
Consider the case of the car starting at rest and accelerating forward. A. Since the air inside the car is not leaking out, it m
Alchen [17]

Answer:

The force originates from the tires. Tires accelerate the car. The car interior in turn accelerates the air inside the car by providing a pushing force. Thus it is the car read windows, seats and side windows that push the air forward causing it to accelerate.

Explanation:

The air inside the car is being forced forward by the car interior. This includes the rear windows, seats, side windows etc.

This accelerating force originates from the tires, and makes the car interior accelerate with the car. The air inside (since it has no direct connection to the tires) is then pushed forward by the windows, seats etc.

7 0
3 years ago
If earth increase the distance from the sun, what will happen to the period of orbi t(the time it takes to complete one revoluti
Mandarinka [93]

The period of the orbit would increase as well

Explanation:

We can answer this question by applying Kepler's third law, which states that:

"The square of the orbital period of a planet around the Sun is proportional to the cube of the semi-major axis of its orbit"

Mathematically,

\frac{T^2}{a^3}=const.

Where

T is the orbital period

a is the semi-major axis of the orbit

In this problem, the question asks what happens if the distance of the Earth from the Sun increases. Increasing this distance means increasing the semi-major axis of the orbit, a: but as we saw from the previous equation, the orbital period of the Earth is proportional to a, therefore as a increases, T increases as well.

Therefore, the period of the orbit would increase.

Learn more about Kepler's third law:

brainly.com/question/11168300

#LearnwithBrainly

5 0
4 years ago
What is the heat needed to raise the temperature of 24.7 kg silver from 14.0 degrees celsius to 30.0 degrees celsius? specific h
Citrus2011 [14]
The amount of heat needed to increase the temperature of a substance by \Delta T is given by
Q=m C_s \Delta T
where
m is the mass of the substance
C_s is its specific heat capacity
\Delta T is the increase of temperature

The sample of silver of our problem has a mass of m=24.7 kg. Its specific heat capacity is C_s = 236 J/g^{\circ}C and the increase in temperature is
\Delta T=30.0^{\circ}-14.0^{\circ}C=16.0^{\circ}C

Therefore, the amount of heat needed is
Q=mC_s \Delta T=(24.7 kg)(236 J/g^{\circ}C)(16.0^{\circ}C)=9.32 \cdot 10^4 J
8 0
4 years ago
A 10.0g marble slides to the left with a velocity of magnitude 0.400 m/s on the frictionless, horizontal surface of an icy New Y
GalinKa [24]

Answer:

1. The final velocity of the 30.0 g marble is 0.100 m/s to the left.

2. The final velocity of the 10.0 g marble is 0.500 m/s to the right.

3. The change in momentum for the 30.0 g marble is -9.00 × 10⁻³ kg · m/s

4. The change in momentum for the 10.0 g marble is 9.00 × 10⁻³ kg · m/s

5. The change in kinetic energy for the 30.0 g marble is -4.5 × 10⁻⁴ J  

6. The change in kinetic energy for the 10.0 g marble is 4.5 × 10⁻⁴ J

Explanation:

Hi there!

Since the collision is elastic both the momentum and kinetic energy of the system comprised by the two marbles is conserved, i.e., it remains constant after the collision.

momentum before the collision = momentum after the collision

mA · vA + mB · vB = mA · vA´ + mB · vB´

Where:

mA and vA = mass and velocity of the 10.0 g marble.

mB and vB = mass and velocity of the 30.0 g marble.

vA´ and vB´ = final velocities of marble A and B respectively.

The kinetic energy of the system is also conserved:

kinetic energy before the collision = kinetic energy after the collision

1/2 mA · vA² + 1/2 mB · vB² = 1/2 mA · (vA´)² + 1/2 mB · (vB´)²

Then, replacing with the available data:

mA · vA + mB · vB = mA · vA´ + mB · vB´

0.010 kg · (-0.400 m/s) + 0.030 kg · 0.200 m/s = 0.010 kg · vA´ + 0.030 kg · vB´

2 × 10⁻³ kg · m/s =  0.010 kg · vA´ + 0.030 kg · vB´

Solving for vA´

0.2 kg · m/s - 3 kg · vB´ = vA´

Now, using conservation of the kinetic energy:

1/2 mA · vA² + 1/2 mB · vB² = 1/2 mA · (vA´)² + 1/2 mB · (vB´)²

0.010 kg · (-0.400 m/s)² + 0.030 kg · (0.200 m/s)² = 0.010 kg · (vA´)² + 0.030 kg · (vB´)²

2.8 × 10⁻³ kg · m/s = 0.010 kg · (vA´)² + 0.030 kg · (vB´)²

Replacing vA´:

2.8 × 10⁻³ kg · m/s = 0.010 kg · (vA´)² + 0.030 kg · (vB´)²

2.8 × 10⁻³ kg · m/s = 0.010 kg · (0.2 kg · m/s - 3 kg · vB´)² + 0.030 kg · (vB´)²

(I will omit units from this point for more clarity in the calculations)

2.8 × 10⁻³  = 0.010  (0.2 - 3 · vB´)² + 0.03 · (vB´)²

2.8 × 10⁻³ = 0.010(0.04 - 1.2 vB´ + 9(vB´)²) + 0.03(vB´)²

divide by 0.01 both sides of the equation:

0.28 = 0.04 - 1.2 vB´ + 9(vB´)² + 3(vB´)²

0 = -0.28 + 0.04 - 1.2 vB´ + 12(vB)²

0 = -0.24 - 1.2 vB´ + 12(vB)²

Solving the quadratic equation:

vB´= 0.200  m/s

vB´ = -0.100  m/s

The first value is discarded because it is the initial velocity. Then, the final velocity of the 30.0 g marble is 0.100 m/s to the left.

The velocity of the 10.0 g marble will be:

0.2 kg · m/s - 3 kg · vB´ = vA´

0.2 kg · m/s - 3 kg · (-0.100 m/s) = vA´

vA´ = 0.500 m/s

The final velocity of the 10.0 g marble is 0.500 m/s to the right.

The change in momentum of the 30.0 g marble is calculated as follows:

Δp = final momentum - initial momentum

Δp = 0.030 kg · (-0.100 m/s) -(0.030 kg · 0.200 m/s) = -9.00 × 10⁻³ kg · m/s

The change in momentum for the 30.0 g marble is -9.00 × 10⁻³ kg · m/s

The change in momentum of the 10.0 g marble is calculated in the same way:

Δp = final momentum - initial momentum

Δp = 0.010 kg · 0.500 m/s -(-0.010 kg · 0.400 m/s) = 9.00 × 10⁻³ kg · m/s

The change in momentum for the 10.0 g marble is 9.00 × 10⁻³ kg · m/s

The change in kinetic energy for the 30.0 g marble will be:

ΔKE = final kinetic energy - initial kinetic energy

ΔKE = 1/2 · 0.030 kg · (-0.100 m/s)² - 1/2 · 0.030 kg · (0.200 m/s)²

ΔKE = -4.5 × 10⁻⁴ J

The change in kinetic energy for the 30.0 g marble is -4.5 × 10⁻⁴ J

The change in kinetic energy for the 10.0 g marble will be:

ΔKE = final kinetic energy - initial kinetic energy

ΔKE = 1/2 · 0.010 kg · (0.500 m/s)² - 1/2 · 0.010 kg · (-0.400 m/s)²

ΔKE = 4.5 × 10⁻⁴ J

The change in kinetic energy for the 30.0 g marble is 4.5 × 10⁻⁴ J

8 0
3 years ago
Other questions:
  • Which is about 30 times as far from the sun as our own planet?
    5·1 answer
  • In what ways did the work of Copernicus and Galileo differ from the views of the ancient Greeks and of their contemporaries?
    9·1 answer
  • A car comes to a bridge during a storm and finds the bridge washed out. The driver must get to the other side, so he decides to
    12·1 answer
  • How many protons, neutrons and electrons in a neutral atom with the symbol 41Ca
    6·1 answer
  • A(n) 6.2 kg object moving at 4.2 m/s eastward has a one-dimensional elastic collision with a(n) 6 kg object moving at 6.9 m/s in
    14·1 answer
  • Convert 60 miles/hour to m/s (1.6km = 1mile; 1000m = 1km)
    8·1 answer
  • Which of the following statements about nuclear energy is true? a. Nuclear energy cannot be contained or controlled. by. Nuclear
    5·1 answer
  • What was the acceleration of the 2 kg cart. What was the acceleration of the 4 kg cart. What was the acceleration of the 6 kg ca
    7·2 answers
  • How u do this atomic mass
    14·2 answers
  • 13. A type of cuckoo clock keeps time by having a mass bouncing on a spring, usually something cute like a cherub in a chair. Wh
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!