Answer:
The impulse exerted by one cart on the other has a magnitude of 4 N.s.
Explanation:
Given;
mass of the first cart, m₁ = 2 kg
initial speed of the first car, u₁ = 3 m/s
mass of the second cart, m₂ = 4 kg
initial speed of the second cart, u₂ = 0
Let the final speed of both carts = v, since they stick together after collision.
Apply the principle of conservation of momentum to determine v
m₁u₁ + m₂u₂ = v(m₁ + m₂)
2 x 3 + 0 = v(2 + 4)
6 = 6v
v = 1 m/s
Impulse is given by;
I = ft = mΔv = m(
The impulse exerted by the first cart on the second cart is given;
I = 2 (3 -1 )
I = 4 N.s
The impulse exerted by the second cart on the first cart is given;
I = 4(0-1)
I = - 4 N.s (equal in magnitude but opposite in direction to the impulse exerted by the first).
Therefore, the impulse exerted by one cart on the other has a magnitude of 4 N.s.
volume of balloon
= 4/3 T R3
= 4/3 x 3.14 x 6.953
= 1405.47 m3
uplift force
= volume of balloon x density of air x 9.8
= = 1405.47 x 1.29 x 9.8
= 1813.05 x 9.8 N
weight of helium gas
= volume of balloon x density of helium x
9.8
= 1405.47 x .179 x 9.8
= 251.58 x 9.8 N
Weight of other mass = 930 x 9.8 N Total weight acting downwards
= 251.58 x 9.8 +930 x 9.8
= 1181.58 x 9.8 N
If W be extra weight the uplift can balance
1181.58 × 9.8 + W × 9.8 = 1813.05 * 9.8
1181.58+W=1813.05
W= 631.47 kg