Answer:

Explanation:
<u>LC Circuit</u>
It's a special circuit made of three basic elements: The AC source, a capacitor, and an inductor. The charge, current, and voltage are oscillating when there is an interaction between the electric and magnetic fields of the elements. The following variables will be used for the formulas:
= charge of the capacitor in any time 
= initial charge of the capacitor
=angular frequency of the circuit
= current through the circuit in any time 
The charge in an LC circuit is given by

The current is the derivative of the charge

We are given

It means that
![q(t_1) = q_0 \, cos (\omega t_1 )=q_1\ .......[eq 1]](https://tex.z-dn.net/?f=q%28t_1%29%20%3D%20q_0%20%5C%2C%20cos%20%28%5Comega%20t_1%20%29%3Dq_1%5C%20.......%5Beq%201%5D)
![i(t_1) = - \omega q_0 \, sin(\omega t_1)=i_1.........[eq 2]](https://tex.z-dn.net/?f=i%28t_1%29%20%3D%20-%20%5Comega%20q_0%20%5C%2C%20sin%28%5Comega%20t_1%29%3Di_1.........%5Beq%202%5D)
From eq 1:

From eq 2:

Squaring and adding the last two equations, and knowing that


Operating

Solving for 

Now we know the value of
, we repeat the procedure of eq 1 and eq 2, but now at the second time
, and solve for 

Solving for 

Now we replace the given values. We'll assume that the placeholder is a pi for the frequency, i.e.




Finally


Answer:
The final temperature of both objects is 400 K
Explanation:
The quantity of heat transferred per unit mass is given by;
Q = cΔT
where;
c is the specific heat capacity
ΔT is the change in temperature
The heat transferred by the object A per unit mass is given by;
Q(A) = caΔT
where;
ca is the specific heat capacity of object A
The heat transferred by the object B per unit mass is given by;
Q(B) = cbΔT
where;
cb is the specific heat capacity of object B
The heat lost by object B is equal to heat gained by object A
Q(A) = -Q(B)
But heat capacity of object B is twice that of object A
The final temperature of the two objects is given by

But heat capacity of object B is twice that of object A

Therefore, the final temperature of both objects is 400 K.
This had to do with gain power and trade inequality business