1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nonamiya [84]
2 years ago
12

The period of a satellite, the time it takes for a complete revolution, depends on the satellite's: _________

Physics
1 answer:
GREYUIT [131]2 years ago
5 0

The period of a satellite, the time it takes for a complete revolution, depends on the satellite's mass of planet and the distance of satellite form center of the planet .

According to the question

The period of a satellite, the time it takes for a complete revolution, depends on the satellite's:

1. The mass of the planet being orbited

2. The distance of the satellite from the center of the planet.

Hence, The period of a satellite, the time it takes for a complete revolution, depends on the satellite's mass of planet and the distance of satellite form center of the planet .

To know more period of a satellite about here:

brainly.com/question/14502000

#SPJ4

You might be interested in
In an LC circuit at one time the charge stored by the capacitor is 10 mC and the current is 3.0 A. If the frequency of the circu
Ronch [10]

Answer:

i_2=3.61\ A

Explanation:

<u>LC Circuit</u>

It's a special circuit made of three basic elements: The AC source, a capacitor, and an inductor. The charge, current, and voltage are oscillating when there is an interaction between the electric and magnetic fields of the elements. The following variables will be used for the formulas:

q, q_1, q_2 = charge of the capacitor in any time t, t_1, t_2

q_o = initial charge of the capacitor

\omega=angular frequency of the circuit

i, i_1, i_2 = current through the circuit in any time t, t_1, t_2

The charge in an LC circuit is given by

q(t) = q_0 \, cos (\omega t )

The current is the derivative of the charge

\displaystyle i(t) = \frac{dq(t)}{dt} = - \omega q_0 \, sin(\omega t).

We are given

q_1=10\ mc=0.01\ c, i_1=3\ A,\ q_2=6\ mc=0.006\ c\ ,\ f=\frac{1000}{4\pi}

It means that

q(t_1) = q_0 \, cos (\omega t_1 )=q_1\ .......[eq 1]

i(t_1) = - \omega q_0 \, sin(\omega t_1)=i_1.........[eq 2]

From eq 1:

\displaystyle cos (\omega t_1 )=\frac{q_1}{q_0}

From eq 2:

\displaystyle sin(\omega t_1)=-\frac{i_1}{\omega q_0}

Squaring and adding the last two equations, and knowing that

sin^2x+cos^2x=1

\displaystyle \left ( \frac{q_1}{q_0} \right )^2+\left ( \frac{i_1}{\omega q_0} \right )^2=1

Operating

\displaystyle \omega^2q_1^2+i_1^2=\omega^2q_o^2

Solving for q_o

\displaystyle q_o=\frac{\sqrt{\omega^2q_1^2+i_1^2}}{\omega}

Now we know the value of q_0, we repeat the procedure of eq 1 and eq 2, but now at the second time t_2, and solve for i_2

\displaystyle \omega^2q_2^2+i_2^2=\omega^2q_o^2

Solving for i_2

\displaystyle i_2=w\sqrt{q_o^2-q_2^2}

Now we replace the given values. We'll assume that the placeholder is a pi for the frequency, i.e.

\displaystyle f=\frac{1}{4\pi}\ KHz

w=2\pi f=500\ rad/s

\displaystyle q_o=\frac{\sqrt{(500)^2(0.01)^2+3^2}}{500}

q_0=0.01166\ c

Finally

\displaystyle i_2=500\sqrt{0.01166^2-.006^2}

i_2=5\ A

3 0
3 years ago
The heat capacity of object B is twice that of object A. Initially A is at 300 K and B at 450 K. They are placed in thermal cont
ivann1987 [24]

Answer:

The final temperature of both objects is 400 K

Explanation:

The quantity of heat transferred per unit mass is given by;

Q = cΔT

where;

c is the specific heat capacity

ΔT is the change in temperature

The heat transferred by the  object A per unit mass is given by;

Q(A) = caΔT

where;

ca is the specific heat capacity of object A

The heat transferred by the  object B per unit mass is given by;

Q(B) = cbΔT

where;

cb is the specific heat capacity of object B

The heat lost by object B is equal to heat gained by object A

Q(A) = -Q(B)

But heat capacity of object B is twice that of object A

The final temperature of the two objects is given by

T_2 = \frac{C_aT_a + C_bT_b}{C_a + C_b}

But heat capacity of object B is twice that of object A

T_2 = \frac{C_aT_a + C_bT_b}{C_a + C_b} \\\\T_2 = \frac{C_aT_a + 2C_aT_b}{C_a + 2C_a}\\\\T_2 = \frac{c_a(T_a + 2T_b)}{3C_a} \\\\T_2 = \frac{T_a + 2T_b}{3}\\\\T_2 = \frac{300 + (2*450)}{3}\\\\T_2 = 400 \ K

Therefore, the final temperature of both objects is 400 K.

4 0
3 years ago
What would you have loved to press the pause button on so you could go deeper
kiruha [24]

Answer:

~Banana Fish~

3 0
3 years ago
this refers to the process of manufacturing that introduced powered machinery to the production of goods​
Sidana [21]
This had to do with gain power and trade inequality business
5 0
4 years ago
What are two ways in which ultrasound technology produces images
arsen [322]
Fetal and ophthalmic
6 0
3 years ago
Other questions:
  • A stone with a mass of 0.700kg is attached to one end of a string 0.600m long. The string will break if its tension exceeds 65.0
    15·1 answer
  • Objects with masses of 235 kg and a 535 kg are separated by 0.330 m. (a) find the net gravitational force exerted by these objec
    10·1 answer
  • Scheduling comes before sequencing. In scheduling, we develop plans for our work centers where production activities occur. We l
    11·1 answer
  • What is the relationship between DNA and RNA?
    9·1 answer
  • On my bike I was able to travel 40 miles in one hour from this information we can determine the bikes
    13·1 answer
  • How would amperage and voltage affect the power of the fence
    7·1 answer
  • Part B<br> Does the size of the particles change as the substance changes state?
    10·1 answer
  • System uses 49J of energy to do work in the change of internal energy is 58 j. how much heat was added to the system?
    10·1 answer
  • TIMED! WOULD REALLY APPRECIATE HELP! TYSM!!!
    13·1 answer
  • a student that weighs 436 n is standing on a scale in an elevator and notices that the scale reads 498 n. from this information,
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!