1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
scZoUnD [109]
1 year ago
15

Heavy crate sits at rest on the floor of a warehouse. you push on the crate with a force of 400 n, and it doesn't budge. what is

the magnitude of the friction force on the crate in newtons?
Physics
1 answer:
maks197457 [2]1 year ago
8 0

Heavy crate sits at rest on the floor of a warehouse. you push on the crate with a force of 400 N, and it doesn't budge. The magnitude of the friction force on the crate in Newton is 400N

This is due to Friction force, which is defined as the resisting force that acts on a body when it is at rest (Static friction) or when it is in motion (Kinetic friction).

When a force is applied on a stationary body, the force of static friction starts to act on the body which prevents any relative motion between the object and surface. The magnitude of friction increases up to μsN, where μs is the coefficient of static friction. As the crate didn't budge, it means the amount of force applied was less than μsN. Hence the force applied was canceled by an equal and opposite amount of frictional force which was equal to 400N.

Learn more about frictional force here

brainly.com/question/1714663

#SPJ4

You might be interested in
Saturn moves in an orbit around the Sun with radius 10 AU. How many degrees does it move on the Celestial in one year? (Hint: Ca
Lana71 [14]

Answer:

B. About 12 degrees

Explanation:

The orbital period is calculated using the following expression:

T = 2π*(\sqrt{\frac{r^3}{Gm}})

Where r is the distance of the planet to the sun, G is the gravitational constant and m is the mass of the sun.

Now, we don't actually need to solve the values of the constants, since we now that the distance from the sun to Saturn is 10 times the distance from the sun to the earth. We now this because 1 AU is the distance from the earth to the sun.

Now, we divide the expression used to calculate the orbital period of Saturn by the expression used to calculate the orbital period of the earth. Notice that the constants will cancel and we will get the rate of orbital periods in terms of the distances to the sun:

\frac{Tsaturn}{Tearth} = \sqrt{\frac{rSaturn^3}{rEarth^3} } = \sqrt{10^3}}

Knowing that the orbital period of the earth is 1 year, the orbital period of Saturn will be \sqrt{10^3}} years, or 31.62 years.

We find the amount of degrees it moves in 1 year:

1year * \frac{360degrees}{31.62years} = 11.38 degrees

or about 12 degrees.

6 0
3 years ago
Consider two identical objects of mass m = 0.250 kg and charge q = 4.00 μC. The first charge is held in place at the origin of a
Gnom [1K]

Answer:

a = 640 m/s²

Explanation:

From work-kinetic energy principles,

The net force acting on the second object is the gravitational force and the electric force due to the first object.

So, the gravitational force on the mass is F₁ = Gm₁m₂/r² since m₁ = m₂ = m, U = -Gm²/r²

Also, the electric force on the charge is F₂ = kq₁q₂/r² since q₁ = q₂ = q, U = kq²/r²

The net Force F = ma

So, -F₁ + F₂ = F     (F₁ is negative since it is an attractive force in the negative x -direction and F₂ is positive since it is a repulsive force in the positive x- direction)

-Gm²/r² + kq²/r² = ma

ma = -Gm²/r² + kq²/r²

a = (-Gm²/r² + kq²/r²)/m

a = (-G + kq²/m²)m/r²

Since m = 0.250 kg, q = 4.00 μC = 4.00 × 10⁻⁶ C, r = 3.00 cm = 3.00 × 10⁻² m, G = 6.67 × 10⁻¹¹ Nm²/kg², k = 9 × 10⁹ Nm²/C² and a = acceleration of second mass.

Substituting the variables into the equation, we have

a = (m/r²)(-G + k(q/m)²)]

a = (0.250 kg/{3.00 × 10⁻² m}²)(-6.67 × 10⁻¹¹ Nm²/kg² + 9 × 10⁹ Nm²/C²(4.00 × 10⁻⁶ C/0.250 kg)²)

a = (0.250 kg/9.00 × 10⁻⁴ m)(-6.67 × 10⁻¹¹ Nm²/kg² + 9 × 10⁹ Nm²/C²(16 × 10⁻⁶ C/kg)²)]

a = (0.250 kg/9.00 × 10⁻⁴ m)(-6.67 × 10⁻¹¹ Nm²/kg² + 9 × 10⁹ Nm²/C²(256 × 10⁻¹² C²/kg²)]

a = (0.250 kg/9.00 × 10⁻⁴ m)(-6.67 × 10⁻¹¹ Nm²/kg² + 2304 × 10⁻³ Nm²/kg²  ]

a = (0.250 kg/9.00 × 10⁻⁴ m)(2.304 Nm²/kg²)

a = 0.576 Nm²/kg /9.00 × 10⁻⁴ m²

a = 0.064 × 10⁴N/kg

a = 64 × 10 N/kg)

a = 640 m/s²

8 0
3 years ago
Gravitational force acts on all objects in proportion to their masses. Why then, a heavy object does not fall faster than a ligh
guapka [62]

Answer:

This is because the acceleration of objects due to gravity is independent of the mass of the object and is constant for all objects, therefore, all objects fall with the same speed.

Explanation:

The weight of an object or force of gravity acting on an object on the surface of earth is a product of its mass and acceleration due to gravity.

Mathematically, w = mg

where, m=mass of the object; g = acceleration due to gravity

Also, from newton's law of gravitation, gravitational force on the object ,F = GMm/r²

where G is the gravitational constant; M is mass of Earth; m is mass of object; r is the distance of separation between the object and the center of mass of the earth which is approximately the radius of earth.

Since the weight of an object is equal to the force of gravitation acting on it

W = F

mg = GMm/r²

g = GM/r²

The expression above is that of the relationship between the force of gravity acting on a body on the earth's surface, the weight of that body and the acceleration due to gravity, g.

It can be seen that the acceleration due to gravity g is independent of the mass of the object. Therefore, the acceleration of objects due to gravity is constant for all objects and all objects fall with the same speed.

4 0
3 years ago
Read 2 more answers
What is true of both gravity and magnetism?
stira [4]

Explanation:

I want to say option B - Both forces can act without objects touching.

5 0
3 years ago
A car changes chemical energy from fuel into thermal energy and ________ energy.
Shkiper50 [21]

Answer:

Mechanical energy

Explanation:

A car changes chemical energy from fuel into thermal energy and mechanical energy.

Mechanical energy can be defined as the type of energy that is possessed by an object due to its motion or position. Mechanical energy is the sum of potential energy and kinetic energy, that is, the sum of energy in motion and stored energy. Examples of mechanical energy includes driving a car, riding a bicycle, listening to music etc.

Types of mechanical energy

1. Motion energy (kinetic energy)

2. Stored energy(potential energy)

Mechanical energy = Kinetic energy + Potential energy

4 0
3 years ago
Other questions:
  • An engineer is adding a heat sink to a motor to help absorb some of the heat produced by the motor. Which piece of metal would a
    11·2 answers
  • Which is the most extreme system of social inequality?
    9·1 answer
  • Distance v. Time
    6·1 answer
  • The model of the universe that suggests that the sun is the center of the universe was first brought by
    5·2 answers
  • A car is traveling in a uniform circular motion on a section of road whose radius is r. The road is slippery, and the car is jus
    14·1 answer
  • When a gas is compressed, the molecules are pushed closer together causing the gas to ______.
    12·2 answers
  • Define Behavioral Therapy: (In your own words). Write at least 1 mental illness you think the therapy can help with.
    6·1 answer
  • Petroleum is a nonrenewable resource. true or false
    13·1 answer
  • A man kicks the 150-g ball such that it leaves the ground at an angle of 60° and strikes the ground at the same elevation a dist
    8·1 answer
  • Lực hút trái đất là dì
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!