Heat is given by multiplying the specific heat capacity of a substance by mass and the change in temperature. The heat capacity of water is Approximately 4184 J/K/C.
Therefore, heat = mc0 mass in kg
= (422/1000) × 4184 × (100-23.5)
= 135072.072 J
Latent heat of vaporization is 2260 kJ/kg
Thus the heat will be 0.422 × 2260000 = 953720 J
Heat to raise steam from 100 to 150
2000 × 0.422 ×50 = 42200 J
Thus the heat required is (135072.072 + 953720 + 42200) = 1330992.07 Joules or 1330 kilo joules
he bond strength of compounds A, B, C, and D as measured by their bond energies (kJ/mol) 350, 500, 180, and 1,450, respectively. Which compound will most likely conduct electricity when dissolved in water? C.
Answer:
45th answer is pure and properties 42 is periodictable
Answer:
7.43 × 10²⁴ m⁻³
Explanation:
Data provided in the question:
Conductivity of a semiconductor specimen, σ = 2.8 × 10⁴ (Ω-m)⁻¹
Electron concentration, n = 2.9 × 10²² m⁻³
Electron mobility,
= 0.14 m²/V-s
Hole mobility,
= 0.023 m²/V-s
Now,
σ = 
or
σ = 
here,
q is the charge on electron = 1.6 × 10⁻¹⁹ C
p is the hole density
thus,
2.8 × 10⁴ = 1.6 × 10⁻¹⁹( 2.9 × 10²² × 0.14 + p × 0.023 )
or
1.75 × 10²³ = 0.406 × 10²² + 0.023p
or
17.094 × 10²² = 0.023p
or
p = 743.217 × 10²²
or
p = 7.43 × 10²⁴ m⁻³
Answer:
moves molecules
Explanation:
I did this one yesterday! Active transport moves low to high concentration and passive does the opposite so C and D are not an option. Active transport requires energy and Passive Transport does not so it has to be A.!