The first dissociation for H2X:
H2X +H2O ↔ HX + H3O
initial 0.15 0 0
change -X +X +X
at equlibrium 0.15-X X X
because Ka1 is small we can assume neglect x in H2X concentration
Ka1 = [HX][H3O]/[H2X]
4.5x10^-6 =( X )(X) / (0.15)
X = √(4.5x10^-6*0.15)
∴X = 8.2 x 10-4 m
∴[HX] & [H3O] = 8.2x10^-4
the second dissociation of H2X
HX + H2O↔ X^2 + H3O
8.2x10^-4 Y 8.2x10^-4
Ka2 for Hx = 1.2x10^-11
Ka2 = [X2][H3O]/[HX]
1.2x10^-11= y (8.2x10^-4)*(8.2x10^-4)
∴y = 1.78x10^-5
∴[X^2] = 1.78x10^-5 m
The heart is a part of the Circulatory system.
The electron configuration of alkali metals would then resemble those of group 17 of the periodic table in the compounds they form.
<h3>
</h3><h3>
What is periodic table?</h3>
Periodic table is defined as a tabular approach of showing the items so that they appear in the same vertical column or group when their attributes are similar. Phosphorus is the oldest chemical element, and hassium is the newest. Please take note that, unlike in the Periodic system, the elements do not exhibit their natural relationships with one another.
The elements that make up group 17 of the periodic table are the halogens. They are nonmetals that are reactive, such as iodine, bromine, chlorine, and fluorine. Halogens are non-metals that are very reactive. These substances share a lot of characteristics with one another.
Thus, the electron configuration of alkali metals would then resemble those of group 17 of the periodic table in the compounds they form.
<h3>
</h3>
To learn more about periodic table, refer to the link below:
brainly.com/question/11155928
#SPJ2
Answer:
a
Explanation:
it is A because h20 and c02 are molecules while what make them up are atoms
Answer:
billion is larger \ part if billion