Nucleus
Nucleic acids, plasmids, and, rarely, thylakoids can be found in prokaryotic cells.
        
             
        
        
        
Answer:
Genetic engineering has multiple applications in different fields. Genetic engineering is the process by which alterations are made at the genetic level so that the final product is superior in quality and yield.
Explanation:
Following are few of it's applications:
<u>Medical field</u>- Genetic engineering is been used to produce insulin artificially, human growth hormones, anti hemophiliac factors, vaccines and other drugs.
<u>Agricultural industry</u>- It has been used to synthesize  improvised crops which give better yield and are pest resistant. E.g Flavr savr, a species of tomato which is more juicy and larger in size than regular tomatoes.
<u>Environment</u>- With the introduction of herbicide resistant corn, farmers reduced the use of tractors which in turn reduced the amount of greenhouse gases. Also, by imparting disease resistance to plants, a lot of plants are prevented from dying. In addition, the biodiversity of an area can be maintained.
 
        
             
        
        
        
Fuel cells can make an electricity from a simple electrochemical
reaction in which oxygen and hydrogen combine to form water. There are several
different types of fuel cell but they are all based around a central design
which consists of two electrodes, a negative anode and a positive cathode.
These are separated by a solid or liquid electrolyte that carries electrically
charged particles between the two electrodes. A catalyst, such as platinum, is
often used to speed up the reactions at the electrodes. Fuel cells are
classified according to the nature of the electrolyte. Every type needs
particular materials and fuels and is suitable for any applications. The
article below uses the proton exchange membrane fuel cell to illustrate the
science and technology behind the fuel cell concept but the characteristics and
applications of the other main designs are also discussed.  Proton Exchange Membrane Fuel Cells (PEMFC) 
The hydrogen ions permeate across the electrolyte to the
cathode, while the electrons flow through an external circuit and provide
power. Oxygen, in the form of air, is supplied to the cathode and this combines
with the electrons and the hydrogen ions to produce water. These reactions at
the electrodes are as follows: 
Anode: 2H24H+ + 4e- 
Cathode: O2 + 4H+ + 4e- 2H2O 
Overall: 2H2 + O22H2O + energy 
PEM cells operate at a temperature of around 80°C. At this
low temperature the electrochemical reactions would normally occur very slowly
so they are catalysed by a thin layer of platinum on each electrode.