Answer:
Velocity, v = 0.239 m/s
Explanation:
Given that,
The distance between two consecutive nodes of a standing wave is 20.9 cm = 0.209 m
The hand generating the pulses moves up and down through a complete cycle 2.57 times every 4.47 s.
For a standing wave, the distance between two consecutive nodes is equal to half of the wavelength.

Frequency is number of cycles per unit time.

Now we can find the velocity of the wave.
Velocity = frequency × wavelength
v = 0.574 × 0.418
v = 0.239 m/s
So, the velocity of the wave is 0.239 m/s.
Answer:
The angular separation between the refracted red and refracted blue beams while they are in the glass is 42.555 - 42.283 = 0.272 degrees.
Explanation:
Given that,
The respective indices of refraction for the blue light and the red light are 1.4636 and 1.4561.
A ray of light consisting of blue light (wavelength 480 nm) and red light (wavelength 670 nm) is incident on a thick piece of glass at 80 degrees.
We need to find the angular separation between the refracted red and refracted blue beams while they are in the glass.
Using Snell's law for red light as :

Again using Snell's law for blue light as :

The angular separation between the refracted red and refracted blue beams while they are in the glass is 42.555 - 42.283 = 0.272 degrees.
Some examples of stable system are:
1) functions of sine
2) DC
3) signum
4) unit step
5) cosine.
Happy Studying! ^^
Answer: 7200 m
Explanation: The solution is, first convert 15 minutes to seconds.
15 mins x 60 s / 1 min = 900 s
Use the formula for speed which is v= d/t then derive for d.
d = vt
= 8 m/s ( 900s)
= 7200 m
Answer:
a) 



b) 
Explanation:
From the exercise we got the ball's equation of position:

a) To find the average velocity at the given time we need to use the following formula:

Being said that, we need to find the ball's position at t=2, t=2.5, t=2.1, t=2.01, t=2.001



--


--


--


b) To find the instantaneous velocity we need to derivate the equation

