Answer:
a) 378Ns
b) 477.27N
Explanation:
Impulse is the defined as the product of the applied force and time taken. This is expressed according to the formula
I = Ft = m(v-u)
m is the mass = 70kg
v is the final velocity = 5.4m/s
u is the initial velocity = 0m/s
Get the impulse
I = m(v-u)
I = 70(5.4-0)
I = 70(5.4)
I = 378Ns
b) Average total force is expressed as
F = ma (Newton's second law)
F = m(v-u)/t
F = 378/0.792
F = 477.27N
Hence the average total force experienced by a 70.0-kg passenger in the car during the time the car accelerates is 477.27N
Answer:
Increases.
Explanation:
The electric potential increases when the two positive charges of same magnitude bring close to one charge to another because there is repulsive force between them due to same charge and when the two opposite charges move away from each other, the potential energy decreases. When two opposite charges are brought closer together, electric potential energy decreases while on the other hand, when we move opposite charges apart from each other than the work done against the attractive force that leads to an increase in electric potential energy.
Answer: Igneous rock , formed by the cooling of magma (molten rock) inside the Earth or on the surface. Sedimentary rocks, formed from the products of weathering by cementation or precipitation on the Earth's surface. Metamorphic rocks, formed by temperature and pressure changes inside the Earth.
Explanation:
It depends on the steady-state frequency. At zero frequency an inductor behaves like an open circuit. As the frequency increases, the inductor acts more like an open circuit and a capacitator acts more like a short circuit
The answer for the following problem is mentioned below.
The option for the question is "A" approximately.
- <u><em>Therefore the elastic potential energy of the string is 20 J.</em></u>
Explanation:
Given:
Spring constant (k) = 240 N/m
amount of the compression (x) = 0.40 m
To calculate:
Elastic potential energy (E)
We know;
<em>According to the formula;</em>
E = × k × x × x
<u>E = </u><u> × k ×(x)²</u>
where;
E represents the elastic potential energy
K represents the spring constant
x represents amount of the compression in the string
So therefore,
Substituting the values in the above formula;
E = × 240 × (0.40)²
E = × 240 × 0.16
E = × 38.4
E = 19.2 J or approximately 20 J
<u><em>Therefore the elastic potential energy of the string is 20 J.</em></u>