Answer:
D. The cart is moving at a constant speed or velocity
Explanation:
Equilibrium is a state of body in which it is either at rest or moves with uniform velocity. The sum of forces acting on such a body is always zero and the sum of all the torques acting on it is also zero.
There are two types of equilibrium as follows:
Static Equilibrium: When a body is at rest it is said to be in static equilibrium.
Dynamic Equilibrium: When a body is moving with constant velocity, then it is said to be in dynamic equilibrium.
Hence, the correct option here will be:
<u>D. The cart is moving at a constant speed or velocity</u>
Answer:
w = 706.32 [N]
Explanation:
The force due to gravitational acceleration can be calculated by means of the product of mass by gravitational acceleration.
w = m*g
where:
w = weight [N] (units of Newtons)
m = mass = 72 [kg]
g = gravity acceleration = 9.81 [m/s²]
Then we have:
![w = 72*9.81\\w = 706.32 [N]](https://tex.z-dn.net/?f=w%20%3D%2072%2A9.81%5C%5Cw%20%3D%20706.32%20%5BN%5D)
Answer:
350 miles
Explanation:
because multiply 70 times 5 and you will get 350
There are only two types of planetary motion and these kinds are revolution and rotation. Revolution is the act of the planets in the solar system to move around or "revolve" around the sun while rotation is done in which the planet "rotates" on its axis. In addition, the earth revolves around the sun in 365 and 1/4 days.
Answer:
6.72 m/s
Explanation:
recall that the equations of motion may be expressed as
v² = u² + 2as
where,
v = final velocity,
u = initial velocity = 0 m/s because it is stationary before it starts falling
a = acceleration (in this case because it is falling, it is the acceleration due to gravity = 9.81 m/s²)
s = distance traveled = 2.3m
in our case, if we neglect air resistance, then we simply substitute the known values above into the equation of motion.
v² = u² + 2as
v² = 0² + 2(9.81)(2.3)
v² = 45.126
v = √45.126
v = 6.72 m/s