Answer: 56.72 ft/s
Explanation:
Ok, initially we only have potential energy, that is equal to:
U =m*g*h
where g is the gravitational acceleration, m the mass and h the height.
h = 50ft and g = 32.17 ft/s^2
when the watermelon is near the ground, all the potential energy is transformed into kinetic energy, and the kinetic energy can be written as:
K = (1/2)*m*v^2
where v is the velocity.
Then we have:
K = U
m*g*h = (m/2)*v^2
we solve it for v.
v = √(2g*h) = √(2*32.17*50) ft/s = 56.72 ft/s
Answer: A liquid to gas
Explanation: I just got it wrong :(
Answer:
68.585m/sec , 779.1 N
Explanation:
To feel weightless, centripetal acceleration must equal g (9.8m/sec^2). The accelerations then cancel.
From centripetal motion.
F =( mv^2)/2
But since we are dealing with weightlessness
r = 480m
g = 9.8m/s^2
M also cancels, so forget M.
V^2 = Fr
V = √ Fr
V =√ (9.8 x 480) = 4704
= 68.585m/sec.
b) Centripetal acceleration = (v^2/2r) = (68.585^2/960) = 4704/960
= 4.9m/sec^2.
Weight (force) = (mass x acceleration) = 159kg x (g - 4.9)
159kg × ( 9.8-4.9)
159kg × 4.9
= 779.1N
Mostly GPE and a little KE since the ball is high up (GPE) and it's also moving (KE) but not as much as it had when you first threw it
The electric field at the surface of the cylinder is 51428V/m
Given data:
• The length of the charge is l= 7m.
• The charge is q = 2μC..
• The radius the cylinder is r = 10 cm
Since the filament length is so large as compared to the cylinder length that the infinite line of charge can be assumed.
The expression to calculate the electric field is given as,
E=2kλ/r
Here, λ is the linear charge density.
Substitute the values in the above equation,
E = (2×9×109N⋅m^2/C^2×2×10^−6C)/0.1m×7m
E = 51428N/C×(V/m)/(N/C)
=51428V/m
An electric charge is the property of matter where it has more or fewer electrons than protons in its atoms. Electrons carry a negative charge and protons carry a positive charge. Matter is positively charged if it contains more protons than electrons, and negatively charged if it contains more electrons than protons.
Learn more about charge here:
brainly.com/question/19886264
#SPJ4