The maximum pressure variations the human ear can withstand above and below atmospheric pressure is around 30 pa. the normal atmospheric pressure is around 101325 pa. hence the variation in the maximum pressure for human ear is very small as compared to the atmospheric pressure. if the ear is exposed to a pressure greater than this , it can cause permanent damage to the ear.
Answer:
3120J
Explanation:
Given parameters:
C = Specific heat capacity = 0.8J/g°C
Initial temperature = 20°C
Mass given = 5g
Final temperature = 800°C
Unknown:
Energy given to the mass = ?
Solution:
To find the energy given to the mass, let us simply use the expression below:
H = m c ΔT
H is the unknown, the energy supplied
m is the mass of the substance
c is the specific heat capacity
ΔT is the change in temperature
Input the variables;
H = 5 x 0.8 x (800 - 20) = 3120J
Answer:
Zero
Explanation:
As force acting on the body is equal to the product of mass and acceleration.
Acceleration is equal to rate of change in velocity.
Here velocity is constant so acceleration is zero.
It means the net force acting on the vehicle is zero.
Evidence: Data gathered
Experiment: Looking through a telescope
Observations: Testing what happens
Reasoning: Thinking a problem through
I believe that these should be correct.
Hoping you pass!
Hi there!

We know that:

U = Potential Energy (J)
K = Kinetic Energy (J)
E = Total Energy (J)
At 10m, the total amount of energy is equivalent to:
U + K = 50 + 50 = 100 J
To find the highest point the object can travel, K = 0 J and U is at a maximum of 100 J, so:
100J = mgh
We know at 10m U = 50J, so we can solve for mass. Let g = 10 m/s².
50J = 10(10)m
m = 1/2 kg
Now, solve for height given that E = 100 J:
100J = 1/2(10)h
100J = 5h
<u>h = 20 meters</u>