Answer:
a)

b) 
Explanation:
The net force on the car must produce the centripetal acceleration necessary to make this circle, which is
. At the top of the circle, the normal force and the weight point downwards (like the centripetal force should), while at the bottom the normal force points upwards (like the centripetal force should) and the weight downwards, so we have (taking the upwards direction as positive):

Which means:

The limit for falling off would be
, so the minimum speed would be:

Answer:
Proper weighting
Explanation:
Proper weighing involves the condition of a scuba diver that is fully geared having a near empty tank and the BCD emptied with a held breadth is expected to float at eye level
The fundamental of adequate or good buoyancy of a scuba diver is to ensure proper weighting when diving, With proper weighting, there is more control for the diver when a safety stop is required. There is less need to carry excess weight that increases drag and gas consumption.
Answer:
<h2>1567.09 N/m</h2>
Explanation:
Step one:
given data
mass m=5kg
compression x= 3.13cm to m= 0.0313m
<em>According to Hooke's law, provided the elastic limit of an elastic material is not exceeded the extension e is directly proportional to the applied force</em>
F=ke
where
k= spring constant in N/m
e= extension/compression in
Step two:
assume g= 9.81m/s^2
F=mg
F=5*9.81
F=49.05N
substitute in the expression F=ke
49.05=k*0.0313
k=49.05/0.0313
k=1567.09 N/m
<u>The force constant (in N/m) of the spring is 1567.09 N/m</u>
Answer:
The force exerted by the floor is 80 N.
Explanation:
Given that,
Mass of ball = 0.5 kg
Velocity= 4 m/s
Time t = 0.05 s
When the ball rebounds then the kinetic energy is

Where, m = mass of ball
v = velocity of ball
Put the value into the formula


The average force exerted by the floor on the ball = change in kinetic energy over collision time


Hence, The force exerted by the floor is 80 N.
This method is known as linear perspective.
When using linear perspective, artists use a set of drawn or imaginary lines which are made to converge at the horizon of the image. These lines change the viewer's perspective by providing a point through which the relative size, shape and position of objects is determined. This technique creates the illusion of depth.