Answer:
A. Boyle's Law
B. Charles' Law
C. Gay-Lussac's Law
Explanation:
An air bag inflates due to the decomposition of sodium azide or NaN₃ to completely fill the bag with nitrogen gas which is an example of Boyle's law, which states that the pressure of a given mass of gas is inversely proportional to its volume, hence due to the estricted volume of the airbag, the pressure of the nitrogen gas in the bag increses protecting the occupants of a cr from injuries in a crash
Helium balloon decrease in sice in a freezer is an example of Charlles law which states that the volume of a given mass of gas is nverslely proportionl to its temperature at constant pressure
A can of spray paint will explode if tossed into a fire is an example of Gay-Lussac's Law which states that the pressure of a given mass of gas is directly proportional to its temperature hence the increased pressure causes the can ti explode
Answer:
1.81 x 10²⁴ atoms
Explanation:
To find the number of atoms in the given number of moles, we need to understand that every substance contains the Avogadro's number of particles.
More appropriately, a mole of any substance will contain the Avogadro's number of particles which is 6.02 x 10²³ atoms
So;
If 1 mole of a substance = 6.02 x 10²³ atoms;
3 mole of MgCl₂ will contain 3 x 6.02 x 10²³ = 1.81 x 10²⁴ atoms
4 In the open chain, 5 in the cyclic. Just like glucose.
Answer:
39.1 °C
Explanation:
Recall the equation for specific heat:

Where q is the heat, m is the mass, c is the specific heat of the substance (in this case water), and delta T is the change in temperature.
You should know that the specific heat of water is 1 cal/g/C.
Using the information in the question:

The final temperature is about 39.1 °C.
In a titration, for an acid to neutralize a base, at the equivalence point, there should be an equal number of moles of H+ and OH-.
Moles of OH- can be found by multiplying the concentration of the base by the volume. (You will need to keep in mind the stoichimetric coefficients if the strong base is Ca(OH)₂, Ba(OH)₂, or Sr(OH)₂.
Moles of OH- = moles of H+
(0.253 M) * 0.005 L = 0.01000 L * c
c = 0.1265 M
The concentration of HBr is 0.127 M.