1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ksenya-84 [330]
3 years ago
12

A 110.0-g sample of metal at 82.00°C is added to 110.0 g of H2O(l) at 27.00°C in an insulated container. The temperature rises t

o 30.56°C. Neglecting the heat capacity of the container, what is the specific heat of the metal? The specific heat of H2O(l) is 4.18 J/(g ∙ °C). Group of answer choices 4.18 J/(g ∙ °C) 60.4 J/(g ∙ °C) 0.289 J/(g ∙ °C) 0.289 J/(g ∙ °C) 14.4 J/(g ∙ °C)
Chemistry
2 answers:
erastovalidia [21]3 years ago
7 0

Answer:

The specific heat of the metal is 0.289 J/g°C

Explanation:

Step 1: Data given

Mass of metal = 110.0 grams

Temperature of the metal = 82.00 °C

MAss of water = 110.0 grams

Temperature of the water = 27.00 °C

The final temperature = 30.56 °C

The specific heat of H2O is 4.18 J/(g°C).

Step 2: Calculate the specific heat of the metal

Heat lost = heat gained

Qlost = - Qgained

Qmetal = - Qwater

Q =m*c*ΔT

m(metal)*c(metal)*ΔT(metal) = -m(water) * c(water) *ΔT(water)

⇒with m(metal) = the mass of the metal = 110.0 grams

⇒with c(metal) = the specific heat of the metal = TO BE DETERMINED

⇒with ΔT(metal) = the change of temperature of the metal = T2 - T1 = 30.56 - 82.00 °C= -51.44 °C

⇒with m(water) = the mass of water = 110.0 grams

⇒with c(water) = the specific heat of water = 4.18 J/g°C

⇒with ΔT(water) = the change of temperature of water = T2 - T1 = 30.56 °C - 27.00 °C = 3.56 °C

110.0 * c(metal) * -51.44 = -110.0 * 4.18 * 3.56

c(metal) = 0.289 J/g°C

The specific heat of the metal is 0.289 J/g°C

lina2011 [118]3 years ago
7 0

Answer:

Cp_{metal}=0.289\frac{J}{g^oC}

Explanation:

Hello,

In this case, as the water is cold (lower initial temperature) and the metal is hot (higher initial temperature), the heat lost by the metal is gained by the water to attain an equilibrium temperature of 30.56 °C, this in an equation turns out:

-\Delta H_{metal}=\Delta H_{water}

In such a way, in terms of masses, heat capacities and temperatures we have:

-m_{metal}Cp_{metal}(T_{eq}-T_{metal})=m_{water}Cp_{water}(T_{eq}-T_{water})

Hence, solving for the heat capacity of the metal:

Cp_{metal}=\frac{m_{water}Cp_{water}(T_{eq}-T_{water})}{-m_{metal}Cp_{metal}(T_{eq}-T_{metal})}

Thus, with the given data we obtain:

Cp_{metal}=\frac{110.0g*4.18\frac{J}{g^oC} (30.56^oC-27.00^oC)}{-110.0g(30.56^oC-82.00^oC)}\\\\Cp_{metal}=0.289\frac{J}{g^oC}

Best regards.

You might be interested in
The three states of matter are solid, liquid, and gas. true or false
maria [59]
That is True XD
Hope that  helps :D
3 0
3 years ago
What type of experiments can be carried out to determine the spontaneity of a reaction? Does spontaneity have any relationship t
Alexeev081 [22]

Answer:

Following are the responses to this question:

Explanation:

They can measure the spontaneity of the reaction with the form,\Delta G =\Delta H - T \Delta S Substituting the values of \Delta H, T,\ and \  \Delta S in the above expression information mostly on the playfulness of the reaction would be given to us from the expression above. This reaction is spontaneous if the price of \Delta G is negative, and if it is positive the response is not random. At equilibrium, the values of \Delta G, \Delta H, \ and \ \Delta S are 0.

6 0
2 years ago
A sample of gas contains 6.25 × 10-3 mol in a 500.0 mL flask at 265°C. What is the pressure of the gas in kilopascals? Which var
RideAnS [48]

55.9 kPa; Variables given = volume (V), moles (n), temperature (T)

We must calculate <em>p</em> from <em>V, n</em>, and <em>T</em>, so we use <em>the Ideal Gas Law</em>:

<em>pV = nRT</em>

Solve for <em>p</em>: <em>p = nRT/V</em>

R = 8.314 kPa.L.K^(-1).mol^(-1)

<em>T</em> = (265 + 273.15) K = 538.15 K

<em>V</em> = 500.0 mL = 0.5000 L

∴ <em>p</em> = [6.25 x 10^(-3) mol x 8.314 kPa·L·K^(-1)·mol^(-1) x 538.15 K]/(0.5000 L) = 55.9 kPa

4 0
3 years ago
Read 2 more answers
The formation of aluminum chloride can be described by the balanced chemical equation.
ikadub [295]

Answer:this is hard tho-

Explanation:

4 0
2 years ago
write an activity to show the change in state and change in temperature during a chemical reaction(change)
Paha777 [63]
If a piece of charcoal is taken and set on fire it will evolve CO2 and heat. Charcoal is solid but carbon dioxide is gaseous. This is an example of change of state and evolve of heat during chemical reaction.
5 0
3 years ago
Other questions:
  • Is fluorine a element, compound or mixture
    12·2 answers
  • The density of copper is 8.92 g/cm3. What is the volume in L of a 230.14 mg sample of copper?
    10·1 answer
  • Consider the following intermediate chemical equations.
    9·1 answer
  • Water can be made to boil at 105 degrees Celsius instead of 100 degrees Celsius by
    8·1 answer
  • 3.) <br><br> Please answer this question!
    14·1 answer
  • Cells can regulate different processes in two ways. They can turn on and off the genes that make enzymes, or they can
    15·1 answer
  • ESCOJA UNA DE LAS CULTURAS ESTUDIADAS Y SELECCIONE UNA POSICIÓN SOCIAL DENTRO DE LA CULTURA (RELIGIOSA, GOBERNADOR LOCAL, ETC.)
    12·1 answer
  • What is the answer do this?
    5·1 answer
  • Which of the following limits a population's growth?
    13·2 answers
  • Which personal trait do scientists mainly depend upon when they design an experiment
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!