Answer:
<h3>F=4k.gm/s^2</h3>
Explanation:
<h3>F=m×a</h3><h3>f=2k.g×2m/s^2</h3><h3>f=4k.gm/s^2</h3>
Answer:
(a) rate = 4.82 x 10⁻³s⁻¹ [N2O5]
(b) rate = 1.16 x 10⁻⁴ M/s
(c) rate = 2.32 x 10⁻⁴ M/s
(d) rate = 5.80 x 10⁻⁵ M/s
Explanation:
We are told the rate law is first order in N₂O₅, and its rate constant is 4.82 x 10⁻³s⁻¹ . This means the rate is proportional to the molar concentration of N₂O₅, so
(a) rate = k [N2O5] = 4.82 x 10⁻³s⁻¹ x [N2O5]
(b) rate = 4.82×10⁻³s⁻¹ x 0.0240 M = 1.16 x 10⁻⁴ M/s
(c) Since the reaction is first order if the concentration of N₂O₅ is double the rate will double too: 2 x 1.16 x 10⁻⁴ M/s = 2.32 x 10⁻⁴ M/s
(d) Again since the reaction is halved to 0.0120 M, the rate will be halved to
1.16 x 10⁻⁴ M/s / 2 = 5.80 x 10⁻⁵ M/s
Answer:
Thomson made the following conclusions: The cathode ray is composed of negatively-charged particles. The particles must exist as part of the atom, since the mass of each particle is only ∼ 20001start fraction, 1, divided by, 2000, end fraction the mass of a hydrogen atom.
Explanation:
Answer:
Energy transfers to the metal from the water and calorimeter until they are all at room temperature.
Explanation:
i hope this helps
Single replacement because only one letter is being switched out in the reaction