Using Phosphoric acid will work perfectly for producing Hydrogen halides because its not an Oxidizing agent. ...
Using an ionic chloride and Phosphoric acid
H3PO4 + NaCl ==> HCl + NaH2PO4
H3PO4 + NaI ==> HI + NaH2PO4
H2SO4 + NaCl ==> HCl + NaHSO4
This method(Using H2So4) will work for all hydrogen hydrogen halide except Hydrogen Iodide and Hydrogen Bromide.
The Sulphuric acid won't be useful for producing Hydrogen Iodide because its an OXIDIZING AGENT. Whist producing the Hydrogen Iodide... Some of the Iodide ions are oxidized to Iodine.
2I-² === I2 + 2e-
The given blank can be filled with isomers.
The isomers in chemistry refers to the molecules or ions with similar formulas, but different compositions. The isomers refer to the molecules that exhibit the same chemical formula, however, distinct three-dimensional shapes. Though isomers do not always share identical properties. The two prime forms of isomerism are stereoisomerism or spatial isomerism and structural isomerism or constitutional isomerism.
Answer:
Prompt Neutrons
Explanation:
Principle. Using uranium-235 as an example, this nucleus absorbs thermal neutrons, and the immediate mass products of a fission event are two large fission fragments, which are remnants of the formed uranium-236 nucleus. These fragments emit two or three free neutrons (2.5 on average), called prompt neutrons.
<h3>
Answer:</h3>
5.6 L
<h3>
Explanation:</h3>
We are given;
- Initial volume, V1 = 3.5 L
- Initial pressure, P1 = 0.8 atm
- Final pressure, P2 = 0.5 atm
We are required to calculate the final volume;
- According to Boyle's law, the volume of a fixed mass of a gas and the pressure are inversely proportional at a constant temperature.
- That is; P α 1/V
- Mathematically, P=k/V
- At two different pressure and volume;
P1V1 = P2V2
In this case;
Rearranging the formula;
V2 = P1V1 ÷ P2
= (0.8 atm × 3.5 L) ÷ 0.5 atm
= 5.6 L
Therefore, the resulting volume is 5.6 L