no i dont agree, because a glass bowl is shiny but its not a metal. just because some metals are shiny doesnt make all metals shiny
Answer:
The gravitational force between m₁ and m₂, is approximately 1.06789 × 10⁻⁶ N
Explanation:
The details of the given masses having gravitational attractive force between them are;
m₁ = 20 kg, r₁ = 10 cm = 0.1 m, m₂ = 50 kg, and r₂ = 15 cm = 0.15 m
The gravitational force between m₁ and m₂ is given by Newton's Law of gravitation as follows;

Where;
F = The gravitational force between m₁ and m₂
G = The universal gravitational constant = 6.67430 × 10⁻¹¹ N·m²/kg²
r₂ = 0.1 m + 0.15 m = 0.25 m
Therefore, we have;

The gravitational force between m₁ and m₂, F ≈ 1.06789 × 10⁻⁶ N
The answer is FM...That's why all the good stations that people listen to are on FM
Answer:
Explanation:
Not sure what your options are but anything that says something like
"at the block surface in contact with the ramp along the line from V to Z" is probably a good shot.
Answer:22.6g
Explanation:
Mass of water(mw)=1liter=1000g
Final temperature=20°C
Temperature of ice=0°C
Temperature of water=56°C
Change in temperature of water=56-20=36
change in temperature of ice=20-0=20
Specific heat of water=1cal/g°C
Latent heat of ice=79.7cal/g
1000x1x36=mx79.7x20
36000=1594xm
Divide both sides by 1594
36000 ➗ 1594=1594xm ➗ 1594
22.6=m of ice
m of ice=22.6g