Answer:
b. They orbit around the Sun in a counterclockwise direction, when viewed from above the ecliptic plane.
Explanation:
All the objects of the solar system revolve around the Sun in a counterclockwise direction. The comet coming from the Oort's cloud will also follow the same kind of orbit. That is why it can't be a property to distinguish an Oort's cloud comet.
All other properties are correct to identify an Oort's cloud comet as the Oort's cloud is a considered a spherical cloud just outside the Solar system.
Answer:
the watt is the unit of power or radiant flax
Answer:
Between 2.0 s and 4.0 s (B and C)
Between 5.0 s and 8.0 s (D and E)
Between 10.0 s and 11.0 s (F and G)
Explanation:
The graph shown in the figure is a velocity-time graph, which means that:
- On the x-axis, the time is plotted
- On the y-axis, the velocity is plotted
Therefore, this means that the object is not moving when the line is horizontal (because at that moment, the velocity is constant, so the object is not moving). This occurs in the following intervals:
Between 2.0 s and 4.0 s (B and C)
Between 5.0 s and 8.0 s (D and E)
Between 10.0 s and 11.0 s (F and G)
From the graph, it would be possible to infer additional information. In particular:
- The area under the graph represents the total distance covered by the object
- The slope of the graph represents the acceleration of the object
Answer:
B)
Explanation:
a brilliant work on all the principles it open up a whole new world and change the world algebraicly
Answer:
Explanation:
Given that,
Mass of counterweight m= 4kg
Radius of spool cylinder
R = 8cm = 0.08m
Mass of spool
M = 2kg
The system about the axle of the pulley is under the torque applied by the cord. At rest, the tension in the cord is balanced by the counterweight T = mg. If we choose the rotation axle towards a certain ~z, we should have:
Then we have,
τ(net) = R~ × T~
τ(net) = R~•i × mg•j
τ(net) = Rmg• k
τ(net) = 0.08 ×4 × 9.81
τ(net) = 3.139 Nm •k
The magnitude of the net torque is 3.139Nm
b. Taking into account rotation of the pulley and translation of the counterweight, the total angular momentum of the system is:
L~ = R~ × m~v + I~ω
L = mRv + MR v
L = (m + M)Rv
L = (4 + 2) × 0.08
L = 0.48 Kg.m
C. τ =dL/dt
mgR = (M + m)R dv/ dt
mgR = (M + m)R • a
a =mg/(m + M)
a =(4 × 9.81)/(4+2)
a = 6.54 m/s