If the question is true or false then the answer is true
Answer: q = -52.5 μC
Explanation:
The complete question is given thus;
A point charge Q moves on the x-axis in the positive direction with a speed of 280 m/s. A point P is on the y-axis at y=+70mm. The magnetic field produced at the point P, as the charge moves through the origin, is equal to -0.30uTk. What is the charge Q? (uo=4pi x 10^-7 T m/A).
SOLVING:
from the given parameters we can solve this problem.
Given that the
Speed = 280 m/s
y = 70mm
B = -30 * 10⁻⁶T
Using the equation for magnetic field we have;
Β = μqv*r / 4πr²
making q (charge) the subject of formula we have that;
q = B * 4 *πr² / μqv*r
substituting the values gives us
q = (-0.3*10⁻⁶Tk * 4π * 0.07²) / (4π*10⁻⁷ * 280 ) = - [14.7 * 10⁻¹⁰k / 2.8 * 10⁻⁵ k ]
q = -52.5 μC
cheers i hope this helped !!!
Answer:
21.67 rad/s²
208.36538 N
Explanation:
= Final angular velocity = 
= Initial angular velocity = 78 rad/s
= Angular acceleration
= Angle of rotation
t = Time taken
r = Radius = 0.13
I = Moment of inertia = 1.25 kgm²
From equation of rotational motion

The magnitude of the angular deceleration of the cylinder is 21.67 rad/s²
Torque is given by

Frictional force is given by

The magnitude of the force of friction applied by the brake shoe is 208.36538 N
Answer:
Answer: Sound waves and some earthquake waves are longitudinal waves. Ocean, light and other earthquake waves are transverse waves.
Explanation:
There are 2 types of waves:
1. Longitudinal waves: These waves are defined as the waves in which the particles of the medium move in the direction of the wave. This requires a medium to travel. For Example: Sound Waves.
2. Transverse wave: These waves are defined as the waves in which the particles of the medium travel perpendicularly to the direction of the wave. This does not require a medium to travel. These can travel in vacuum also. For Example: Light waves.
Hence, Sound waves and some earthquake waves are longitudinal waves. Ocean, light and other earthquake waves are transverse waves
Stars are not really planets because they are far, far away from our solar system.
Hope this is helpful~