Answer:I need help to
Step-by-step explanation:
Answer:
Where's the chart
Step-by-step explanation:
Answer:
100000 = 8 (4) ^t
Step-by-step explanation:
We are multiplying by 4 each time
y = a (4)^t
The initial amount is 8
y = 8 (4)^t
We want to get to 100000
100000 = 8 (4) ^t
Answer:
33.33% probability that it takes Isabella more than 11 minutes to wait for the bus
Step-by-step explanation:
An uniform probability is a case of probability in which each outcome is equally as likely.
For this situation, we have a lower limit of the distribution that we call a and an upper limit that we call b.
The probability that we find a value X lower than x is given by the following formula.

For this problem, we have that:
Uniformly distributed between 3 minutes and 15 minutes:
So 
What is the probability that it takes Isabella more than 11 minutes to wait for the bus?
Either she has to wait 11 or less minutes for the bus, or she has to wait more than 11 minutes. The sum of these probabilities is 1. So

We want P(X > 11). So

33.33% probability that it takes Isabella more than 11 minutes to wait for the bus
There really is no single "obvious" choice here...
Possibly the sequence is periodic, with seven copies of -1 followed by six copies of 0, or perhaps seven -1s and seven 0s. Or maybe seven -1s, followed by six 0s, then five 1s, and so on, but after a certain point it would seem we have to have negative copies of a number, which is meaningless.
Or maybe it's not periodic, and every seventh value in the sequence is incremented by 1? Who knows?
I'll go ahead and assume the latter case, that the sequence is not periodic, since that's technically somewhat easier to manage. We can assign the following rule to the

-th term in the sequence:


for

.
So the generating function for this sequence might be

As to what is meant by "closed form", I'm not sure. Would this answer be acceptable? Or do you need to find a possibly more tractable form for the coefficient not in terms of the floor function?